- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某公司用480万元购得某种产品的生产技术后,再次投入资金1520万元购买生产设备,进行该产品的生产加工.已知生产这种产品每件还需成本费40元,经过市场调研发现:该产品的销售单价定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格在200元的基础上,每增加10元,年销售量将再减少1万件.设销售单价为
(元),年销售量为
(万件),年获利为
(万元).
(1)请写出
与
之间的函数关系式;
(2)求第一年的年获利
与
之间的函数关系式,并说明投资的第一年,该公司是赢利还是亏损?若赢利,最大利润是多少?若亏损,最少亏损是多少?(
)



(1)请写出


(2)求第一年的年获利



首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题,某单位在国家科研部门的支持下,进行技术攻关,采用了新式艺,把二氧化碳转化为一种可利用的化工产品,已知该单位每月的处理量最少为300吨,最多为600吨,月处理成本
(元)与月处理量
(吨)之间的函数关系可近似地表示为
,且每处理一吨二氧化碳得到可利用的化工产品价值为200元.
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?



(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?
设
是某港口水的深度
(米)关于时间
(时)的函数,其中
.下表是该港口某一天从
时至
时记录的时间
与水深
的关系表:
经长期观察,函数
的图象可以近似地看成函数
的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( ).








![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
经长期观察,函数


A.![]() ![]() | B.![]() ![]() |
C.![]() ![]() | D.![]() ![]() |
广东某市一玩具厂生产一种玩具深受大家喜欢,经市场调查该商品每月的销售量
(单位:千件)与销售价格
(单位:元/件)满足关系式
,其中
,
为常数.已知销售价格为4元/件时,每日可售出玩具21千件.
(1)求
的值;
(2)假设该厂生产这种玩具的成本、员工工资等所有开销折合为每件2元(只考虑销售出的件数),试确定销售价格
的值,使该厂每日销售这种玩具所获得的利润最大.(保留1位小数)





(1)求

(2)假设该厂生产这种玩具的成本、员工工资等所有开销折合为每件2元(只考虑销售出的件数),试确定销售价格

(本小题满分12分)“水”这个曾经被人认为取之不尽、用之不竭的资源,竟然到了严重制约我国经济发展,影响人民生活的程度.因为缺水,每年给我国工业造成的损失达2 000亿元,给我国农业造成的损失达1 500亿元,严重缺水困扰全国三分之二的城市.为了节约用水,某市打算出台一项水费政策,规定每季度每人用水量不超过5吨时,每吨水费1.2元;若超过5吨而不超过6吨时,超过的部分的水费按原价的200%收费;若超过6吨而不超过7吨时,超过部分的水费按原价的400%收费.如果某人本季度实际用水量为x(x≤7)吨,试计算本季度他应交的水费y.(单位:元)
(本题满分12分)
、
两城相距100km,在两地之间 (直线AB上)距
城
km处的
地建一核电站给
、
两城供电,为保证城市安全,核电站与城市距离不得少于10km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数为0.3,若
城供电量为20亿度/月,
城为10亿度/月.
(1)求月供电总费用
表示成
的函数;
(2)核电站建在距A城多远,才能使供电费用最小?









(1)求月供电总费用


(2)核电站建在距A城多远,才能使供电费用最小?
某公司对营销人员有如下规定:
①年销售额
(万元)在8万元以下,没有奖金;
②年销售额
(万元),
时,奖金为
万元,且
,
,且年销售额越大,奖金越多;
③年销售额超过64万元,按年销售额的10%发奖金.
(1)求奖金y关于
的函数解析式;
(2)若某营销人员争取奖金
(万元),则年销售额
(万元)在什么范围内?
①年销售额

②年销售额





③年销售额超过64万元,按年销售额的10%发奖金.
(1)求奖金y关于

(2)若某营销人员争取奖金


有一长为24米的篱笆,一面利用墙(墙最大长度是10米)围成一个矩形花圃,设该花圃宽AB为x米,面积是y平方米,
(1)求出y关于x的函数解析式,并指出x的取值范围;
(2)当花圃一边AB为多少米时,花圃面积最大?并求出这个最大面积?
(1)求出y关于x的函数解析式,并指出x的取值范围;
(2)当花圃一边AB为多少米时,花圃面积最大?并求出这个最大面积?
设在海拔
(单位:m)处的大气压强
(单位:kPa),
与
的函数关系可近似表示为
,已知在海拔1000 m处的大气压强为90 kPa,则根据函数关系式,在海拔2000 m处的大气压强为________ kPa.





某公司租地建仓库,已知仓库每月占用费y1与仓库到车站的距离成反比,而每月车载货物的运费y2与仓库到车站的距离成正比.据测算,如果在距离车站10千米处建仓库,这两项费用y1,y2分别是2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站________千米处.