刷题首页
题库
高中数学
题干
某公司生产一种仪器的固定成本为10000元,每生产一台仪器需增加投入200元,已知总收益满足函数
.
其中x是仪器的月产量(单位:台).
(1)将利润表示为月产量
的函数
;
(2)当月产量x为何值时,公司所获利润最大?最大利润为多少元?
(总收益=总成本﹢利润)
上一题
下一题
0.99难度 解答题 更新时间:2017-10-18 06:38:16
答案(点此获取答案解析)
同类题1
现有含盐7%的食盐水为200 g,需将它制成工业生产上需要的含盐5 %以上且在6%以下(不含5%和6%)的食盐水,设需要加入4%的食盐水
x
g,则
x
的取值范围是__________.
同类题2
某厂生产某种电子元件,如果生产出一件正品,可获利200元,如果生产出一件次品,则损失100元,已知该厂在制造电子元件过程中,次品率p与日产量x的函数关系是:
,为获得最大盈利,该厂的日产量应定为()
A.14件
B.16件
C.24件
D.32件
同类题3
某店从水果批发市场购得椰子两筐,连同运费总共花了300元,回来后发现有12个是坏的,不能将它们出售,余下的椰子按高出成本价1元/个售出,售完后共赚得78元.则这两筐椰子原来共有______个.
同类题4
为了在夏季降温和冬季取暖时减少能源消耗,业主决定对房屋的屋顶和外墙喷涂某种新型隔热材料,该材料有效使用年限为20年.已知房屋外表喷一层这种隔热材料的费用为每毫米厚6万元,且每年的能源消耗费用
(万元)与隔热层厚度
(毫米)满足关系:
.设
为隔热层建造费用与
年的能源消耗费用之和.
(1)请解释
的实际意义,并求
的表达式;
(2)当隔热层喷涂厚度为多少毫米时,业主所付的总费用
最少?并求此时与不建隔热层相比较,业主可节省多少钱?
同类题5
水培植物需要一种植物专用营养液,已知每投放
(
且
)个单位的营养液,它在水中释放的浓度
(克/升)随着时间
(天)变化的函数关系式近似为
,其中
,若多次投放,则某一时刻水中的营养液浓度为每次投放的营养液在相应时刻所释放的浓度之和,根据经验,当水中营养液的浓度不低于4(克/升)时,它才能有效.
(1)若只投放一次2个单位的营养液,则有效时间最多可能达到几天?
(2)若先投放2个单位的营养液,3天后再投放
个单位的营养液,要使接下来的2天中,营养液能够持续有效,试求
的最小值.
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
分式型函数模型的应用