- 集合与常用逻辑用语
- 函数与导数
- 二次函数的图象分析与判断
- 判断二次函数的单调性和求解单调区间
- + 与二次函数相关的复合函数问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,
(1)若函数
为奇函数,求
的值.
(2)若
,有唯一实数解,求
的取值范围.
(3)若
,则是否存在实数
(
),使得函数
的定义域和值域都为
。若存在,求出
的值;若不存在,请说明理由.


(1)若函数


(2)若


(3)若






已知函数
;
.
(I)当
时,求函数
在
上的值域;
(II)若对任意
,总有
成立,求实数
的取值范围;
(III)若
(m为常数),且对任意
,总有
成立,求M的取值范围.


(I)当



(II)若对任意



(III)若



设函数f(x)=
,g(x)=a(x+b)(0<a≤1,b≤0).
(1)讨论函数y=f(x)•g(x)的奇偶性;
(2)当b=0时,判断函数y=
在(﹣1,1)上的单调性,并说明理由;
(3)设h(x)=|af2(x)﹣
|,若h(x)的最大值为2,求a+b的取值范围.

(1)讨论函数y=f(x)•g(x)的奇偶性;
(2)当b=0时,判断函数y=

(3)设h(x)=|af2(x)﹣

函数
是定义在
上的偶函数,当
时,
;
(1)求函数
的解析式;并写出函数
的单调递增区间(不要求证明);
(2)求
在区间
上的最小值;
(3)求不等式
的解集;
(4)若
对
恒成立,求
的取值范围.




(1)求函数


(2)求


(3)求不等式

(4)若


