- 集合与常用逻辑用语
- 函数与导数
- 二次函数的图象分析与判断
- 判断二次函数的单调性和求解单调区间
- + 与二次函数相关的复合函数问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)=loga(b–x)–loga(b+x)(a>0且a≠1,b>0).
(1)求f(x)的定义域;
(2)判断并证明f(x)的奇偶性;
(3)当b=1时,求使f(x)>0成立的x的取值范围.
(1)求f(x)的定义域;
(2)判断并证明f(x)的奇偶性;
(3)当b=1时,求使f(x)>0成立的x的取值范围.
设函数f(x)=g(x)=x2f(x-1),则函数g(x)的递减区间是( )
A.(-∞,0] | B.[0,1) | C.[1,+∞) | D.[-1,0] |
已知函数f(x)=3x-
.
(1)若f(x)=2,求x的值;
(2)判断x>0时,f(x)的单调性;
(3)若3tf(2t)+mf(t)≥0对于t∈
恒成立,求m的取值范围.

(1)若f(x)=2,求x的值;
(2)判断x>0时,f(x)的单调性;
(3)若3tf(2t)+mf(t)≥0对于t∈

设函数
是定义域为R的奇函数.
(1)求
的值;
(2)若
,试判断
的单调性(不需证明),并求使不等式
恒成立的t的取值范围;
(3)若
,求
在
上的最小值.

(1)求

(2)若



(3)若



