- 集合与常用逻辑用语
- 函数与导数
- 二次函数的图象分析与判断
- + 判断二次函数的单调性和求解单调区间
- 与二次函数相关的复合函数问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)=x2+bx+c,其中b,c∈R.
(1)当f(x)的图象关于直线x=1对称时,b=______;
(2)如果f(x)在区间[-1,1]不是单调函数,证明:对任意x∈R,都有f(x)>c-1;
(3)如果f(x)在区间(0,1)上有两个不同的零点.求c2+(1+b)c的取值范围.
(1)当f(x)的图象关于直线x=1对称时,b=______;
(2)如果f(x)在区间[-1,1]不是单调函数,证明:对任意x∈R,都有f(x)>c-1;
(3)如果f(x)在区间(0,1)上有两个不同的零点.求c2+(1+b)c的取值范围.
已知二次函数
(
、
为常数且
),满足条件
,且方程
有等根.
(1)若
,
恒成立,求实数
的取值范围;
(2)是否存在实数
,
,使
当定义域为
时,值域为
?如果存在,求出
,
的值;如果不存在,请说明理由.






(1)若



(2)是否存在实数







已知
是定义在
上的函数,记
,
的最大值为
.若存在
,满足
,
,
,则称一次函数
是
的“逼近函数”,此时的
称为
在
上的“逼近确界”.
(1)验证
是
,
的“逼近函数”;
(2)已知
,
,
.若
是
的“逼近函数”,求
,
的值.














(1)验证



(2)已知






