- 集合与常用逻辑用语
- 函数与导数
- 二次函数的图象分析与判断
- + 判断二次函数的单调性和求解单调区间
- 与二次函数相关的复合函数问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
定义:函数
在区间
上的最大值与最小值的差为
在区间
上的极差,记作
.
①若
,则
________;
②若
,且
,则实数
的取值范围是________.





①若


②若



已知
(
,
为此函数的定义域)同时满足下列两个条件:①函数
在
内单调递增或单调递减;②如果存在区间
,使函数
在区间
上的值域为
,那么称
,
为闭函数
(1)判断函数
是否为闭函数?并说明理由;
(2)求证:函数
(
)为闭函数;
(3)若
是闭函数,求实数
的取值范围











(1)判断函数

(2)求证:函数


(3)若


设函数

(Ⅰ)若




(Ⅱ)在(Ⅰ)的条件下,当


求实数

(Ⅲ)设


