- 集合与常用逻辑用语
- 函数与导数
- 二次函数的概念
- + 二次函数的性质与图象
- 二次函数的图象分析与判断
- 判断二次函数的单调性和求解单调区间
- 与二次函数相关的复合函数问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知关于
的函数
为
上的偶函数,且在区间
上的最大值为10. 设
.
⑴ 求函数
的解析式;
⑵ 若不等式
在
上恒成立,求实数
的取值范围;
⑶ 是否存在实数
,使得关于
的方程
有四个不相等的实 数根?如果存在,求出实数
的范围,如果不存在,说明理由.





⑴ 求函数

⑵ 若不等式



⑶ 是否存在实数




设函数
,
是定义域为R上的奇函数.
(1)求
的值;
(2)已知
,函数
,
,求
的值域;
(3)若
,试问是否存在正整数
,使得
对
恒成立?若存在,请求出所有的正整数
;若不存在,请说明理由.


(1)求

(2)已知




(3)若




