- 集合与常用逻辑用语
- 函数与导数
- 判断函数的对称性
- + 由对称性求函数的解析式
- 由对称性研究单调性
- 函数对称性的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(12分)(2011•重庆)设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f′(x)的图象关于直线x=﹣
对称,且f′(1)=0
(Ⅰ)求实数a,b的值
(Ⅱ)求函数f(x)的极值.

(Ⅰ)求实数a,b的值
(Ⅱ)求函数f(x)的极值.
记函数
的定义域为D. 如果存在实数
、
使得
对任意满
足
且
的x恒成立,则称
为
函数.
(1)设函数
,试判断
是否为
函数,并说明理由;
(2)设函数
,其中常数
,证明:
是
函数;
(3)若
是定义在
上的
函数,且函数
的图象关于直线
(m为常数)对称,试判断
是否为周期函数?并证明你的结论.




足




(1)设函数



(2)设函数




(3)若





