- 集合与常用逻辑用语
- 函数与导数
- 判断函数的对称性
- + 由对称性求函数的解析式
- 由对称性研究单调性
- 函数对称性的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
(常数
)的图像过点
、
两点.
(1)求
的解析式;
(2)若函数
的图像与函数
的图像关于直线
对称,若不等式
恒成立,求实数
的取值范围;
(3)若
是函数
图像上的点列,
是
正半轴上的点列,
为坐标原点,
是一系列正三角形,记它们的边长是
,探求数列
的通项公式,并说明理由.




(1)求

(2)若函数





(3)若








已知函数
,函数
的图象与
的图象关于点
中心对称.
(1)求函数
的解析式;
(2)如果
,
,试求出使
成立的
取值范围;
(3)是否存在区间
,使
对于区间内的任意实数
,只要
且
时,都有
恒成立?




(1)求函数

(2)如果




(3)是否存在区间





