- 集合与常用逻辑用语
- 函数与导数
- + 判断函数的对称性
- 由对称性求函数的解析式
- 由对称性研究单调性
- 函数对称性的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下列命题中的真命题的序号为_________
①函数
的单调递减区间是
;
②当
时,幂函数
是定义域上的增函数;
③函数
的值域是
;
④
;
⑤若函数
满足
,则函数
的图象关于直线
对称.
①函数


②当


③函数


④

⑤若函数




已知
是函数y=f(x)的导函数,定义
为
的导函数,若方程
=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的拐点,经研究发现,所有的三次函数f(x)=ax3+bx2+cx+d(a≠0)都有拐点,且都有对称中心,其拐点就是对称中心,设f(x)=x3﹣3x2﹣3x+6,则f(
)+f(
)+……+f(
)=_____.







给出以下四个结论:
(1)函数
的对称中心是
;
(2)若关于
的方程
在
没有实数根,则
的取值范围是
;
(3)已知点
与点
在直线
两侧,则
;
(4)若将函数
的图象向右平移
个单位后变为偶函数,则
的最小值是
;
其中正确的结论是:_____________________(把所有正确命题的序号填上).
(1)函数


(2)若关于





(3)已知点




(4)若将函数




其中正确的结论是:_____________________(把所有正确命题的序号填上).
已知点P是曲线
上任意一点,记直线OP(O为坐标原点)的斜率为
,则( )


A.至少存在两个点P使得![]() | B.对于任意点P都有![]() |
C.存在点P使得![]() | D.对于任意点P都有![]() |
设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x﹣1),已知当x∈[0,1]时,f(x)=(
)1﹣x,则
①2是函数f(x)的一个周期;
②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;
③函数f(x)的最大值是1,最小值是0;
④x=1是函数f(x)的一个对称轴;
⑤当x∈(3,4)时,f(x)=(
)x﹣3.
其中所有正确命题的序号是_____.

①2是函数f(x)的一个周期;
②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;
③函数f(x)的最大值是1,最小值是0;
④x=1是函数f(x)的一个对称轴;
⑤当x∈(3,4)时,f(x)=(

其中所有正确命题的序号是_____.
已知定义在
上的奇函数
满足
,且
时有
,甲、乙、丙、丁四位同学有下列结论:
甲:
;
乙:函数
在
上是增函数;
丙:函数
关于直线
对称;
丁:若
,则关于
的方程
在
上所有根之和为
.
其中正确的是( )





甲:

乙:函数


丙:函数


丁:若





其中正确的是( )
A.乙、丁 | B.乙、丙 | C.甲、乙、丙 | D.乙、丙、丁 |