- 集合与常用逻辑用语
- 函数与导数
- 函数奇偶性的定义与判断
- + 由奇偶性求函数解析式
- 函数奇偶性的应用
- 抽象函数的奇偶性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
.
(1)判断f(x)的奇偶性,说明理由;
(2)当x>0时,判断f(x)的单调性并加以证明;
(3)若f(2t)-mf(t)>0对于t∈(0,+∞)恒成立,求m的取值范围.

(1)判断f(x)的奇偶性,说明理由;
(2)当x>0时,判断f(x)的单调性并加以证明;
(3)若f(2t)-mf(t)>0对于t∈(0,+∞)恒成立,求m的取值范围.
已知函数f(x)=loga
(a>0且a≠1)是奇函数,
(1)求实数m的值;
(2)若a=
,并且对区间[3,4]上的每一个x的值,不等式f(x)>(
)x+t恒成立,求实数t的取值范围.
(3)当x∈(r,a-2)时,函数f(x)的值域是(1,+∞),求实数a与r的值.

(1)求实数m的值;
(2)若a=


(3)当x∈(r,a-2)时,函数f(x)的值域是(1,+∞),求实数a与r的值.
已知函数f(x)=
.
(Ⅰ)若f(x)是奇函数,求实数a的值;
(Ⅱ)当0<x≤1时,|f(2x)-f(x)|≥1恒成立,求实数a的取值范围.

(Ⅰ)若f(x)是奇函数,求实数a的值;
(Ⅱ)当0<x≤1时,|f(2x)-f(x)|≥1恒成立,求实数a的取值范围.
已知定义域为R的函数f(x)=
是奇函数.
(1)求b的值,判断并用定义法证明f(x)在R上的单调性;
(2)解不等式f(2x+1)+f(x)<0.

(1)求b的值,判断并用定义法证明f(x)在R上的单调性;
(2)解不等式f(2x+1)+f(x)<0.
已知f(x)是定义在R的奇函数,且当x<0时,f(x)=1+3x.
(1)求f(x)的解析式并画出其图形;
(2)求函数f(x)的值域.
(1)求f(x)的解析式并画出其图形;
(2)求函数f(x)的值域.