- 集合与常用逻辑用语
- 函数与导数
- + 函数奇偶性的定义与判断
- 由奇偶性求函数解析式
- 函数奇偶性的应用
- 抽象函数的奇偶性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下列函数在其定义域上既是奇函数又是减函数的是( )。
A.f(x)=-x|x| | B.f(x)=xsinx | C.f(x)=1/x | D.f(x)=x0.5 |
函数
的定义域关于原点对称,但不包括数
,对定义域中的任意实数
,在定义域中存在
使
,且满足以下3个条件.
(1)
是
定义域中的数,
,则
;
(2)
是一个正的常数);
(3)当
时,
.
证明:(I)
是奇函数;
(II)
是周期函数,并求出其周期;
(III)
在
内为减函数.





(1)




(2)

(3)当


证明:(I)

(II)

(III)


已知函数
定义在
上且满足下列两个条件:
①对任意
都有
;②当
时,有
.
(1)证明函数
在
上是奇函数;
(2)判断并证明
的单调性.
(3)若
,试求函数
的零点.


①对任意




(1)证明函数


(2)判断并证明

(3)若

