如图,在平行四边形ABCD中,∠D=60°,点M在线段AD上,DM= ,AM=2,点E从点D出发,沿着D-C-B-A匀速运动,速度为每秒2个单位长度,达到A点后停止运动,设△MDE的面积为y,点E运动的时间为t(s),y与t的部分函数关系如图②所示.
(1)如图①中,DC=_____,如图②中,m=_______,n=_____.
(2)在E点运动过程中,将平行四边形沿ME所在直线折叠,则t为何值时,折叠后顶点D的对应点D′落在平行四边形的一边上.
   
当前题号:1 | 题型:解答题 | 难度:0.99
我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.

(1)已知凸五边形的各条边都相等.
①如图1,若,求证:五边形是正五边形;
②如图2,若,请判断五边形是不是正五边形,并说明理由:
(2)判断下列命题的真假.(在括号内填写“真”或“假”)
如图3,已知凸六边形的各条边都相等.
①若,则六边形是正六边形;(    
②若,则六边形是正六边形.(    
当前题号:2 | 题型:解答题 | 难度:0.99
如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为______.
当前题号:3 | 题型:填空题 | 难度:0.99
如图,在菱形ABCD中,对角线AC、BD相交于点O且AC、BD的长()是方程的两个根.点P从点A出发,以每秒1个单位的速度沿边A→O→B→A的方向运动,运动时间为t(秒).

(1)求AC和BD的长;
(2)求当AP恰好平分时,点P运动时间t的值;
(3)在运动过程中,是否存在点P,使是等腰三角形?若存在,请求出运动时间t的值:若不存在,请说明理由.
当前题号:4 | 题型:解答题 | 难度:0.99
(1)阅读理解:

如图①,在△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是___________;
(2)问题解决: 如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,以C为顶点作∠ECF,使得角的两边分别交AB,AD于E、F两点,连接EF,且EF=BE+DF,试探索∠ECF与∠A之间的数量关系,并加以证明.
当前题号:5 | 题型:解答题 | 难度:0.99
如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为144,则BE________
当前题号:6 | 题型:填空题 | 难度:0.99
对于平面直角坐标系中的动点和图形,给出如下定义:如果为图形上一个动点,两点间距离的最大值为两点间距离的最小值为,我们把的值叫点和图形间的“和距离”,记作,图形).
(1)如图,正方形的中心为点.

①点到线段的“和距离”,线段)=______;
②设该正方形与轴交于点,点在线段上,,正方形)=7,求点的坐标.
(2)如图2,在(1)的条件下,过两点作射线,连接,点是射线上的一个动点,如果,线段,直接写出点横坐标取值范围.
当前题号:7 | 题型:解答题 | 难度:0.99
如图,在边长为的正方形ABCD的一边BC上,有一点PB点运动到C点,设PBx,四边形APCD的面积为y.写出yx之间的关系式为_____(要写出自变量的取值范围).
当前题号:8 | 题型:填空题 | 难度:0.99
如图,在矩形中,,将矩形沿直线折叠,使得点恰好落在边上,记此点为,点和点分别在边和边上.

(1)当时,求的长;
(2)在矩形翻折过程中,是否存在?若存在,求出的长;若不存在,请说明理由.
当前题号:9 | 题型:解答题 | 难度:0.99
如图,在▱ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①∠OBE=∠ADO;②EG=EF;③GF平分∠AGE;④EF⊥GE,其中正确的是_____.
当前题号:10 | 题型:填空题 | 难度:0.99