- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- + 四边形综合
- 中点四边形
- 利用(特殊)平行四边形的对称性求阴影面积
- (特殊)平行四边形的动点问题
- 四边形中的线段最值问题
- 四边形其他综合问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在直角坐标系中,矩形OABC的边OA在x轴上,OC在y轴上,且B的坐标为(8,6),动点D从B点出发,以1个单位长度每秒的速度向C点运动t秒(D不与B,C重合),连接AD,将△ABD沿AD翻折至△AB'D(B'在矩形的内部或边上),连接DB',DB'所在直线与AC交于点F,与OA所在直线交于点E.
(1)①当t= 秒,B'与F重合;
②求线段CB'的取值范围;
(2)①求EB'的长度(用含t的代数式表示),并求出t的取值范围;
②当t为何值时,△AEF是以AE为底的等腰三角形?并求出此时EC的长度.


(1)①当t= 秒,B'与F重合;
②求线段CB'的取值范围;
(2)①求EB'的长度(用含t的代数式表示),并求出t的取值范围;
②当t为何值时,△AEF是以AE为底的等腰三角形?并求出此时EC的长度.



长方形ABCD中,AB=6,AD=8,点E为边AD上一点,将△ABE沿BE折叠后得到△BE
A.![]() (1)如图1,若点E为AD的中点,延长BF交边CD于点G. ①求证:DG=FG. ②求FG的长度. (2)如图2,若点E为边AD的一动点,连接FD,△DEF能否为直角三角形?若能,求出AE的值.若不能,请说明理由. |
如图,在矩形 ABCD 中,AB=5,AD=3.以点 B 为中心,顺时针旋转矩形 BADC,得到矩形 BEFG,点 A、D、C 的对应点分别为 E、F、G.
(1)如图1,当点 E 落在 CD 边上时,求线段 CE 的长;
(2)如图2,当点 E 落在线段 DF 上时,求证:∠ABD=∠EBD;
(3)在(2)的条件下,CD 与 BE 交于点 H,求线段 DH 的长.
(1)如图1,当点 E 落在 CD 边上时,求线段 CE 的长;
(2)如图2,当点 E 落在线段 DF 上时,求证:∠ABD=∠EBD;
(3)在(2)的条件下,CD 与 BE 交于点 H,求线段 DH 的长.

如图,在6×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P运动到点C时,两个点都停止运动.运动时间t 为_______秒时,△PQB成为以PQ为腰的等腰三角形.

如图,平面直角坐标系中,四边形OABC是长方形,O为原点,点A在x轴上,点C在y轴上且A(10,0),C(0,6),点D在AB边上,将△CBD沿CD翻折,点B恰好落在OA边上的点E处.
(1)求点E、点D的坐标;
(2)求折痕CD所在直线的函数表达式;
(3)请你延长直线CD交x轴于点F,点P是坐标轴上一点请直接写出使S△CEP=
S△COF的点P的坐标.
(1)求点E、点D的坐标;
(2)求折痕CD所在直线的函数表达式;
(3)请你延长直线CD交x轴于点F,点P是坐标轴上一点请直接写出使S△CEP=


图1,菱形ABCD的顶点A,D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC于点M,C′D′交直线l于点N,连接MN.
(1)当MN∥B′D′时,求α的大小.
(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.
(1)当MN∥B′D′时,求α的大小.
(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.

如图1,若四边形ABCD、GFED都是正方形,显然图中有AG=CE,AG⊥CE.

(1)当正方形GFED绕D旋转到如图2的位置时,AG=CE是否成立?若成立,请给出证明,若不成立,请说明理由;
(2)当正方形GFED绕D旋转到B,D,G在一条直线(如图3)上时,连结CE,设CE分别交AG、AD于P、H.
①求证:AG⊥CE;
②如果,AD=2
,DG=
,求CE的长.

(1)当正方形GFED绕D旋转到如图2的位置时,AG=CE是否成立?若成立,请给出证明,若不成立,请说明理由;
(2)当正方形GFED绕D旋转到B,D,G在一条直线(如图3)上时,连结CE,设CE分别交AG、AD于P、H.
①求证:AG⊥CE;
②如果,AD=2


如图,在边长为8的正方形ABCD中,E、F分别是边AB、BC上的动点,且EF=6,M为EF中点,P是边AD上的一个动点,则CP+PM的最小值是_____.

如图,在直角梯形ABCD中,∠B=90°,AD∥BC,且AD=4cm,AB=6cm,DC=10cm.若动点P从A点出发,以每秒4cm的速度沿线段AD、DC向C点运动;动点Q从C点出发以每秒5cm的速度沿CB向B点运动,当Q点到达B点时,动点P、Q同时停止运动.设点P、Q同时出发,并运动了t秒,
(1)直角梯形ABCD的BC为_____cm,周长为______cm.
(2)当t为多少时,四边形PQCD成为平行四边形?
(3)是否存在t,使得P点在线段DC上且PQ⊥DC?若存在,求出此时t的值;若不存在,说明理由.
(1)直角梯形ABCD的BC为_____cm,周长为______cm.
(2)当t为多少时,四边形PQCD成为平行四边形?
(3)是否存在t,使得P点在线段DC上且PQ⊥DC?若存在,求出此时t的值;若不存在,说明理由.

已知如图,在菱形ABCD中,对角线AC、BD相交于点O,DE//AC,AE//B

A. (1)求证:四边形AODE是矩形; (2)若△ABC是边长为4 的正三角形,求四边形AODE的面积. |
