- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- + 四边形综合
- 中点四边形
- 利用(特殊)平行四边形的对称性求阴影面积
- (特殊)平行四边形的动点问题
- 四边形中的线段最值问题
- 四边形其他综合问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在平行四边形ABCD中,对角线AC,BD相交于点O.过点O作OE⊥AC,交BC于点E,连接AE.已知△ABE的周长为18,则对角线AC的最大整数值是_____.

邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第n次操作后,余下的四边形是菱形,则称原平行四边形为n阶准菱形,例如:如图1,▱ABCD中,若AB=1,BC=2,则▱ABCD为1阶准菱形.
(1)理解与判断:
邻边长分别为1和3的平行四边形是 阶准菱形;
邻边长分别为3和4的平行四边形是 阶准菱形;
(2)操作、探究与计算:
①已知▱ABCD的邻边长分别为2,a(a>2),且是3阶准菱形,请画出▱ABCD及裁剪线的示意图,并在图形下方写出a的值;
②已知▱ABCD的邻边长分别为a,b(a>b),满足a=7b+r,b=4r,请写出▱ABCD是几阶准菱形.
(1)理解与判断:
邻边长分别为1和3的平行四边形是 阶准菱形;
邻边长分别为3和4的平行四边形是 阶准菱形;
(2)操作、探究与计算:
①已知▱ABCD的邻边长分别为2,a(a>2),且是3阶准菱形,请画出▱ABCD及裁剪线的示意图,并在图形下方写出a的值;
②已知▱ABCD的邻边长分别为a,b(a>b),满足a=7b+r,b=4r,请写出▱ABCD是几阶准菱形.

如图,矩形ABCD的对角线相交于点O,DE∥CA,AE∥B
A.![]() (1)求证:四边形AODE是菱形; (2)若将题设中“矩形ABCD”这一条件改为“菱形ABCD”,其余条件不变,则四边形AODE的形状是什么?不必说明理由. |
如图1,正方形ABCD中,AB=5,点E为BC边上一动点,连接AE,以AE为边,在线段AE右侧作正方形
,连接CF、DF.设
.(当点E与点B重合时,x的值为0),
.小明根据学习函数的经验,对函数
随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:

(1)通过取点、画图、测量、观察、计算,得到了x与y1、y2的几组对应值;
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点
,并画出函数y1,y2的图象;
(3)结合函数图象2,解决问题:当△CDF为等腰三角形时,BE的长度约为 cm.





(1)通过取点、画图、测量、观察、计算,得到了x与y1、y2的几组对应值;
x | 0 | 1 | 2 | 3 | 4 | 5 |
![]() | 5.00 | 4.12 | | 3.61 | 4.12 | 5.00 |
![]() | 0 | 1.41 | 2.83 | 4.24 | 5.65 | 7.07 |
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点

(3)结合函数图象2,解决问题:当△CDF为等腰三角形时,BE的长度约为 cm.
问题提出:

如图①菱形ABCD中,AB=4,∠ABC=60°点0是菱形ABCD两条对角线的交点,EF是经过点O的任意一条线段,容易知道线段EF将菱形ABCD的面积等分,那么线段EF的长度的最大值是 ,最小值是 。
问题探究:
如图② 四边形ABCD中,AD∥BC,AD=2,BC=4,∠B=∠C=60°,请你过点D画出将四边形ABCD面积平分的线段DE,并求出DE的长。
问题解决:
如图③.四边形ABCD是西安城区改造过程中一块不规则空地,为了美化环境,市规划办决定在这块地里种两种花弃,打算过点C修一条笔直的通道,以方便市民出行和观赏花卉,并要求通道两侧种植的花卉面积相等,经测量AB=20米,AD=100米,∠A=60°,∠ABC=150°,∠BCD=120°,若将通道记为CF,请你画出通道CF,并求出通道CF的长。

如图①菱形ABCD中,AB=4,∠ABC=60°点0是菱形ABCD两条对角线的交点,EF是经过点O的任意一条线段,容易知道线段EF将菱形ABCD的面积等分,那么线段EF的长度的最大值是 ,最小值是 。
问题探究:
如图② 四边形ABCD中,AD∥BC,AD=2,BC=4,∠B=∠C=60°,请你过点D画出将四边形ABCD面积平分的线段DE,并求出DE的长。
问题解决:
如图③.四边形ABCD是西安城区改造过程中一块不规则空地,为了美化环境,市规划办决定在这块地里种两种花弃,打算过点C修一条笔直的通道,以方便市民出行和观赏花卉,并要求通道两侧种植的花卉面积相等,经测量AB=20米,AD=100米,∠A=60°,∠ABC=150°,∠BCD=120°,若将通道记为CF,请你画出通道CF,并求出通道CF的长。
已知矩形ABCD的一条边AD=4,将矩形ABCD折叠,使得顶点B落在边上的P点处.

(1)如图1,已知折痕与边BC交于点O,连结AP、OP、OA.求证:△OCP∽△PDA;
(2)若△OCP与△PDA的面积比为1:4,求边AB的长;
(3)如图2,在(1)(2)的条件下,擦去折痕AO线段OP,连结BP,动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.

(1)如图1,已知折痕与边BC交于点O,连结AP、OP、OA.求证:△OCP∽△PDA;
(2)若△OCP与△PDA的面积比为1:4,求边AB的长;
(3)如图2,在(1)(2)的条件下,擦去折痕AO线段OP,连结BP,动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.
已知
,
,
,斜边
,将
绕点
顺时针旋转
,如图1,连接
.
(1)填空:
;
(2)如图1,连接
,作
,垂足为
,求
的长度;
(3)如图2,点
,
同时从点
出发,在
边上运动,
沿
路径匀速运动,
沿
路径匀速运动,当两点相遇时运动停止,已知点
的运动速度为1.5单位
秒,点
的运动速度为1单位
秒,设运动时间为
秒,
的面积为
,求当
为何值时
取得最大值?最大值为多少?








(1)填空:


(2)如图1,连接




(3)如图2,点


















已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.
(1)当∠MAN绕点A旋转到如图1的位置时,求证:BM+DN=MN;
(2)当∠MAN绕点A旋转到BM≠DN
时(如图2),则线段BM,DN和MN之间数量关系是 ;
(3)当∠MAN绕点A旋转到如图3的位置时,猜想线段BM,DN和MN之间又有怎样的数量关系呢?并对你的猜想加以说明.
(1)当∠MAN绕点A旋转到如图1的位置时,求证:BM+DN=MN;
(2)当∠MAN绕点A旋转到BM≠DN

(3)当∠MAN绕点A旋转到如图3的位置时,猜想线段BM,DN和MN之间又有怎样的数量关系呢?并对你的猜想加以说明.

阅读材料:
如图,在四边形ABCD中,对角线AC⊥BD,垂足为P.
求证:S四边形ABCD=

证明:AC⊥BD→

∴S四边形ABCD=S△ACD+S△ACB=

=

解答问题:
(1)上述证明得到的性质可叙述为_______________________________________.
(2)已知:如图,等腰梯形ABCD中,AD∥BC,对角线AC⊥BD且相交于点P,AD=3cm,BC=7cm,利用上述的性质求梯形的面积.
