- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- + 四边形综合
- 中点四边形
- 利用(特殊)平行四边形的对称性求阴影面积
- (特殊)平行四边形的动点问题
- 四边形中的线段最值问题
- 四边形其他综合问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,矩形OABC顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点C出发.以每秒1个单位长度的速度沿CB匀速运动,动点Q从点D出发,以每秒2个单位长度的速度沿x轴的负方向匀速运动,P,Q两点同时运动,当Q点到达O点时两点同时停止运动.设运动时间为t秒,
(1)当t为何值时,四边形OCPQ为矩形?
(2)当t为何值时,以C,P,Q,A为顶点的四边形为平行四边形?
(3)E点坐标(5,0),当△OEP为等腰三角形时,请直接写出所有符合条件的点P的坐标.
(1)当t为何值时,四边形OCPQ为矩形?
(2)当t为何值时,以C,P,Q,A为顶点的四边形为平行四边形?
(3)E点坐标(5,0),当△OEP为等腰三角形时,请直接写出所有符合条件的点P的坐标.

如图,正方形ABCD中,AB=12,点E在边CD上,且BG=CG,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S△FGC=
.其中正确结论的个数是( )



A.2个 | B.3个 | C.4个 | D.5个 |
已知:如图,在平行四边形ABCD中,M、N分别是AD和BC的中点.
(1)求证:四边形AMCN是平行四边形;
(2)若AC=CD,求证四边形AMCN是矩形;
(3)若∠ACD=90°,求证四边形AMCN是菱形;
(4)若AC=CD,∠ACD=90°,求证四边形AMCN是正方形.
(1)求证:四边形AMCN是平行四边形;
(2)若AC=CD,求证四边形AMCN是矩形;
(3)若∠ACD=90°,求证四边形AMCN是菱形;
(4)若AC=CD,∠ACD=90°,求证四边形AMCN是正方形.

如图,点O为线段MN的中点,直线PQ与MN相交于点O,利用此图:

(1)作一个平行四边形AMBN,使A、B两点都在直线PQ上(只保留作图痕迹,不写作法)
(2)根据上述经验探究:在□ ABCD中,AE上CD交CD于E点,F为BC的中点,连接EF、AF,试猜想EF与AF的数里关系,并给予证明.
(3)若∠D=60°,AD=4,CD=3,求EF的长.

(1)作一个平行四边形AMBN,使A、B两点都在直线PQ上(只保留作图痕迹,不写作法)
(2)根据上述经验探究:在□ ABCD中,AE上CD交CD于E点,F为BC的中点,连接EF、AF,试猜想EF与AF的数里关系,并给予证明.
(3)若∠D=60°,AD=4,CD=3,求EF的长.
如图,矩形ABCD中,AB=7cm,BC=3cm,P、Q两点分别从A、B两点同时出发,沿矩形ABCD的边逆时针运动,速度均为1cm/s,当点P到达B点时两点同时停止运动,若PQ长度为5cm时,运动时间为________s.

如图,在平面直角坐标系中,AD∥BC,AD=5,B(-3,0),C(9,0),点E是BC的中点,点P是线段BC上一动点,当PB=________时,以点P、A、D、E为顶点的四边形是平行四边形.

如图,在正方形ABCD中,E,F分别为AB,AD上的点,且AE=AF,点M是EF的中点,连结CM.

(1)求证:CM⊥E

(1)求证:CM⊥E
A. (2)设正方形ABCD的边长为2,若五边形BCDEF的面积为 ![]() |
如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,AO=2,BO=3,BC=4.将正方形沿箭头方向推,使点D落在y轴正半轴上点D’处,则点C的对应点C’的坐标为____. 
