- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- + 四边形综合
- 中点四边形
- 利用(特殊)平行四边形的对称性求阴影面积
- (特殊)平行四边形的动点问题
- 四边形中的线段最值问题
- 四边形其他综合问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,正方形ABCD,AB=4,点M是边BC的中点,点E是边AB上的一个动点,作EG⊥AM交AM于点G,EG的延长线交线段CD于点F.
(1)如图①,当点E与点B重合时,求证:BM=CF;
(2)设BE=x,梯形AEFD的面积为y,求y与x的函数解析式,并写出定义域.
(1)如图①,当点E与点B重合时,求证:BM=CF;
(2)设BE=x,梯形AEFD的面积为y,求y与x的函数解析式,并写出定义域.

如图,在梯形ABCD中,AD∥BC,AB=4,∠C=30°,点E、F分别是边AB、CD的中点,作DP∥AB交EF于点G,∠PDC=90°,求线段GF的长度.

如图,小刚爸爸要利用一块形状为直角三角形(∠C为直角)的铁皮加工一个正方形零件,使C为正方形的一个顶点,其余三个顶点分别在AB、BC、AC边上,请协助小刚爸爸用尺规画出裁割线.

我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.如图,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.
求证:中点四边形EFGH是平行四边形.
求证:中点四边形EFGH是平行四边形.

四边形 OABC 在图 1 中的直角坐标系中,且OC在 y 轴上,OA∥BC,A、B两点的坐标分别为 A(18,0),B(12,8),动点 P、Q分别从 O、B两点出发,点 P以每秒2个单位的速度沿 OA 向终点 A 运动,点 Q 以每秒1个单位的速度沿BC向 C运动,当点 P停止运动时,点 Q 同时停止运动.动点 P、Q 运动时间为 t(单位:秒).
(1)当 t 为何值时,四边形 PABQ 是平行四边形,请写出推理过程;
(2)如图 2,线段 OB、PQ 相交于点 D,过点 D 作 DE∥OA,交 AB 于点 E,射线 QE 交 x 轴于点 F,PF=AO.当 t 为何值时,△PQF 是等腰三角形?请写出推理过程;
(3)如图 3,过 B 作 BG⊥OA 于点 G,过点 A 作 AT⊥x 轴于点 A,延长 CB 交 AT于点 T.将点 G 折叠,折痕交边 AG、BG 于点 M、N,使得点 G 折叠后落在AT 边上的点为 G′,求 AG′的最大值和最小值.
(1)当 t 为何值时,四边形 PABQ 是平行四边形,请写出推理过程;
(2)如图 2,线段 OB、PQ 相交于点 D,过点 D 作 DE∥OA,交 AB 于点 E,射线 QE 交 x 轴于点 F,PF=AO.当 t 为何值时,△PQF 是等腰三角形?请写出推理过程;
(3)如图 3,过 B 作 BG⊥OA 于点 G,过点 A 作 AT⊥x 轴于点 A,延长 CB 交 AT于点 T.将点 G 折叠,折痕交边 AG、BG 于点 M、N,使得点 G 折叠后落在AT 边上的点为 G′,求 AG′的最大值和最小值.

[定义]有一组对角是直角的四边形是垂美四边形.
[理解]如图①,将一对相同的直角三角尺按如图所示的方式拼成四边形ABCD, 每个三角尺三个内角的度数都是 30°、60°和 90°.四边形ABCD是什么四边形,∠ABC+∠ADC等于多少度;
[探究]如图②,四边形ABCD是垂美四边形.∠A=90°.∠B=80°,E 是边 AD延长线上一点,求∠C和∠CDE的度数.
[应用]如图③,四边形 ABCD 是垂美四边形,∠A=90°,BE 和DF分别是∠ABC和∠ADC的平分线,交 AD、BC 于点 E、F.试说明 BE∥DF.
[理解]如图①,将一对相同的直角三角尺按如图所示的方式拼成四边形ABCD, 每个三角尺三个内角的度数都是 30°、60°和 90°.四边形ABCD是什么四边形,∠ABC+∠ADC等于多少度;
[探究]如图②,四边形ABCD是垂美四边形.∠A=90°.∠B=80°,E 是边 AD延长线上一点,求∠C和∠CDE的度数.
[应用]如图③,四边形 ABCD 是垂美四边形,∠A=90°,BE 和DF分别是∠ABC和∠ADC的平分线,交 AD、BC 于点 E、F.试说明 BE∥DF.

如图,一块形如“Z”字形的铁皮,每个角都是直角,且 AB=BC=EF=GF=1, CD=DE=GH=AH=3,现将铁片裁剪并拼接成一个和它等面积的正方形,则正方形的边长是_____.
