- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- + 正方形的性质
- 正方形性质理解
- 根据正方形的性质求角度
- 根据正方形的性质求线段长
- 根据正方形的性质求面积
- 正方形折叠问题
- 求正方形重叠部分面积
- 根据正方形的性质证明
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=CD,则∠BEC的度数为( )


A.22.5° | B.60° | C.67.5° | D.75° |
如图,正方形ABCD的边长为4,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积为______ .

如图,AC是正方形ABCD的对角线,点O是AC的中点,点Q是AB上一点,连接CQ,DP⊥CQ于点E,交BC于点P,连接OP,OQ;
求证:(1)△BCQ≌△CDP;(2)OP=OQ.
求证:(1)△BCQ≌△CDP;(2)OP=OQ.

四边形
是正方形,
是直线
上任意一点,
于点
,
于点
.当点G在BC边上时(如图1),易证DF-BE=E







A.![]() (1)当点 ![]() ![]() ![]() ![]() ![]() (2)当点 ![]() ![]() ![]() ![]() ![]() |