- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 多边形及其内角和
- 平行四边形
- + 特殊的平行四边形
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接A
A.![]() (1)求证:△AED≌△CFD; (2)求证:四边形AECF是菱形. |
如图,将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,连接AE,CF,AC.
(1)求证:四边形AECF为菱形;
(2)若AB=4,BC=8,①求菱形AECF的边长;②求折痕EF的长.
(1)求证:四边形AECF为菱形;
(2)若AB=4,BC=8,①求菱形AECF的边长;②求折痕EF的长.

如图,点P是正方形ABCD对角线AC上一动点,点E在射线BC上,且PE=PB,连接PD,O为AC中点.
(1)如图1,当点P在线段AO上时,试猜想PE与PD的数量关系和位置关系,请说明理由;
(2)①如图2,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由;
②如图2,试用等式来表示PB,BC,CE之间的数量关系,并证明.
(3)如图3,把正方形ABCD改为菱形ABCD,其他条件不变,当
时,连接DE,试探究线段PB与线段DE的数量关系,并说明理由.
(1)如图1,当点P在线段AO上时,试猜想PE与PD的数量关系和位置关系,请说明理由;
(2)①如图2,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由;
②如图2,试用等式来表示PB,BC,CE之间的数量关系,并证明.
(3)如图3,把正方形ABCD改为菱形ABCD,其他条件不变,当

下列四边形中,顺次连接各边中点所得的四边形是矩形的是( )
A.等腰梯形 | B.对角线相等的四边形 |
C.平行四边形 | D.对角线互相垂直的四边形 |
如图,△ABC是等腰直角三角形,其中CA=CB,四边形CDEF是正方形,连结AF、B

A. (1)观察图形,猜想AF与BD之间有怎样的关系,并证明你的猜想; (2)若将正方形CDEF绕点C按顺时针方向旋转,使正方形CDEF的一边落在△ABC的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由. |

如图,在四边形ABCD中,已知AB∥DC,AB=DC. 在不添加任何辅助线的前提下,要想该四边形成为矩形,只需再加上的一个条件是________.

下列说法中,错误的是( ).
A.一组对边平行且相等的四边形是平行四边形 |
B.两条对角线互相垂直且平分的四边形是菱形 |
C.四个角都相等的四边形是矩形 |
D.四条边相等的四边形是正方形 |
顺次连接四边形各边中点,所得的图形是__________。顺次连接对角线______________的四边形的各边中点所得的图形是矩形。顺次连接对角线_________的四边形的各边中点所得的四边形是菱形。顺次连接对角线_________的四边形的各边中点所得的四边形是正方形。
分别以平行四边形ABCD(∠CDA≠90°)的三边AB,CD,DA为斜边作等腰直角三角形,△ABE,△CDG,△ADF.
(1)如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF,EF.请判断GF与EF的数量关系和位置关系(只写结论,不需证明);
(2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF,EF,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由.

(2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF,EF,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由.