- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 多边形及其内角和
- 平行四边形
- + 特殊的平行四边形
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM、射线AE于点F、


A. (1)直接写出∠NDE的度数; (2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由; (3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD= ![]() |


如图,菱形ABCD的边长为4,∠DAB=60°,过点A作AE⊥AC,AE=1,连接BE,交AC于点F,则AF的长度为 ( )


A.![]() | B.![]() | C.![]() | D.![]() |
如图所示,E,F,G,H分别是四边形ABCD的边AB,BC,CD,AD的中点.
(1)当四边形ABCD是矩形时,四边形EFGH是_________,请说明理由;
(2)当四边形ABCD满足什么条件时,四边形EFGH为正方形?并说明理由.
(1)当四边形ABCD是矩形时,四边形EFGH是_________,请说明理由;
(2)当四边形ABCD满足什么条件时,四边形EFGH为正方形?并说明理由.

如图所示,O是矩形ABCD的对角线的交点,作DE∥AC,CE∥BD,DE、CE相交于点E.求证:
(1)四边形OCED是菱形.
(2)连接OE,若AD=4,CD=3,求菱形OCED的周长和面积.
(1)四边形OCED是菱形.
(2)连接OE,若AD=4,CD=3,求菱形OCED的周长和面积.

如图,在□ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.
(1)求证:四边形ABEF是菱形;
(2)若AB=10,BF=16,AD=15, 则□ABCD 的面积是 .
(1)求证:四边形ABEF是菱形;
(2)若AB=10,BF=16,AD=15, 则□ABCD 的面积是 .

下列命题中,假命题是( )
A.两组对角分别相等的四边形是平行四边形 |
B.有一条对角线与一组邻边构成等腰三角形的平行四边形是菱形 |
C.一组邻边互相垂直,两组对边分别平行的四边形是矩形 |
D.有一组邻边相等且互相垂直的平行四边形是正方形 |
如图,在平行四边形ABCD中,点E为AB边上一点,将△AED沿直线DE翻折,点A落在点P处,且DP⊥BC,垂足为F.
(1)求∠EDP的度数.
(2)过D点作DG⊥DC交AB于G点,且AG=FC,
求证:四边形ABCD为菱形.
(1)求∠EDP的度数.
(2)过D点作DG⊥DC交AB于G点,且AG=FC,
求证:四边形ABCD为菱形.

如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD,交AE于点G,连接D

A. 求证:四边形DEFG为菱形. |
