- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 多边形及其内角和
- 平行四边形
- + 特殊的平行四边形
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,连接BD、DF,则图中全等的直角三角形共有( )


A.3对 | B.4对 | C.5对 | D.6对 |
如图,点E是正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.
(1)求证:△ABF≌△CBE;
(2)判断△CEF的形状,并说明理由.
(1)求证:△ABF≌△CBE;
(2)判断△CEF的形状,并说明理由.

如图,矩形OABC在平面直角坐标系内(O为坐标原点),点A在x轴上,点C在y轴上,点B的坐标为(﹣4,﹣4
),点E是BC的中点,现将矩形折叠,折痕为EF,点F为折痕与y轴的交点,EF交x轴于G且使∠CEF=60°.
(1)求证:△EFC≌△GFO;
(2)求点D的坐标;
(3)若点P(x,y)是线段EG上的一点,设△PAF的面积为s,求s与x的函数关系式并写出x的取值范围.

(1)求证:△EFC≌△GFO;
(2)求点D的坐标;
(3)若点P(x,y)是线段EG上的一点,设△PAF的面积为s,求s与x的函数关系式并写出x的取值范围.

在正方形ABCD中,连接B
(2)如图1,在(1)的条件下,将△AEB以A旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD交于M,AE′的延长线与BD交于N.
①依题意补全图1;
②用等式表示线段BM、DN和MN之间的数量关系,并证明.
(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF分别与BD交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)
A. (1)如图1,AE⊥BD于 | B.直接写出∠BAE的度数. |
①依题意补全图1;
②用等式表示线段BM、DN和MN之间的数量关系,并证明.
(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF分别与BD交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)

(阅读发现)如图①,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中△ADE≌△DFC,可知ED=FC,求得∠DMC= .
(拓展应用)如图②,在矩形ABCD(AB>BC)的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.

(1)求证:ED=FC.
(2)若∠ADE=20°,求∠DMC的度数.
(拓展应用)如图②,在矩形ABCD(AB>BC)的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.

(1)求证:ED=FC.
(2)若∠ADE=20°,求∠DMC的度数.
如图,过正方形ABCD的顶点B作直线l,过点A,C作直线l的垂线,垂足分别为E,F,直线AE交CD于点

A. (1)求证:△ABE≌△BCF; (2)若∠CBF=65°,求∠AGC的度数. |

如图,△ABC 中,AD 是高,CE 是中线,点G 是CE 的中点,DG⊥CE,点G 为垂足.
(1)求证:DC=BE;
(2)若∠AEC=66°,求∠BCE 的度数.
(1)求证:DC=BE;
(2)若∠AEC=66°,求∠BCE 的度数.

如图,将长方形纸片进行折叠,ED,EF为折痕,A与
、B与
、C与
重合,若
,则
的度数为( )







A.130° | B.115° | C.65° | D.50° |