请利用下图验证勾股定理.
当前题号:1 | 题型:解答题 | 难度:0.99
(1)如图①是一个重要公式的几何解释.请你写出这个公式;
(2)如图②,Rt△ABC≌Rt△CDE,∠B=∠D=90°,且B、C、D三点在一条直线上.试证明∠ACE=90°;
(3)伽菲尔德(G a rfield,1881年任美国第20届总统)利用(1)中的公式和图②证明了勾股定理(1876年4月1日,发表在《新英格兰教育日志》上),现请你尝试该证明过程.
当前题号:2 | 题型:解答题 | 难度:0.99
阅读下列材料:
(材料)如图,对任意符合条件的直角三角形BAC,绕其锐角顶点逆时针旋转90°得△DAE,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,根据图形我们就能证明勾股定理: .

(请回答)如图是任意符合条件的两个全等的Rt△BEA和Rt△ACD拼成的,你能根据图示再写一种证明勾股定理的方法吗?
当前题号:3 | 题型:解答题 | 难度:0.99
如图,将边长为ab、对角线长为c的长方形纸片,绕点顺时针旋转得到长方形,连接,则四边形为梯形,请通过该图验证勾股定理(求证:).
当前题号:4 | 题型:解答题 | 难度:0.99
2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形.如图所示,如果大正方形的面积是100,小正方形的面积为20,那么每个直角三角形的周长为(  )
A.10+B.10+C.10+D.24
当前题号:5 | 题型:单选题 | 难度:0.99
我们已经学习了一些定理,例如:
①直角三角形两条直角边的平方和等于斜边的平方;
②全等三角形的对应角相等;
③线段垂直平分线上的点到线段两端的距离相等;
④等腰三角形的两个底角相等
上述定理中存在逆定理的是_____(只填序号)
当前题号:6 | 题型:填空题 | 难度:0.99
用4个全等的直角三角形与1个小正方形拼成的正方形图案如图所示,已知大正方形的面积为49,小正方形的面积为9,若用x,y表示直角三角形的两直角边(x>y),请观察图案,指出以下关系式中不正确的是(    )
A.x2+y2=49B.x-y=3C.2xy+9=49D.x+y=13
当前题号:7 | 题型:单选题 | 难度:0.99
三国时期,魏国数学家刘徽为古籍《九章算术》作注释时,指出用“出入相补法”验证勾股定理,如图所示,请加以说明.
当前题号:8 | 题型:解答题 | 难度:0.99
如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为,若,则的值是_______.
当前题号:9 | 题型:填空题 | 难度:0.99
我国是最早了解勾股定理的国家之一.下面四幅图中,不能用来证明勾股定理的是(  )
A.B.C.D.
当前题号:10 | 题型:单选题 | 难度:0.99