刷题首页
题库
初中数学
题干
阅读下列材料:
(材料)如图,对任意符合条件的直角三角形BAC,绕其锐角顶点逆时针旋转90°得△DAE,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,根据图形我们就能证明勾股定理:
.
(请回答)如图是任意符合条件的两个全等的Rt△BEA和Rt△ACD拼成的,你能根据图示再写一种证明勾股定理的方法吗?
上一题
下一题
0.99难度 解答题 更新时间:2018-11-23 02:10:00
答案(点此获取答案解析)
同类题1
如图,由四个直角边分别是6和8的全等直角三角形拼成的“赵爽弦图”,随机往大正方形区域内投针一次,则针扎在小正方形
部分的概率是( )
A.
B.
C.
D.
同类题2
如图是由三个直角三角形组成的梯形,根据图形,写出一个正确的等式______.
同类题3
在平面直角坐标系中,已知△ABC顶点坐标分别为A(0,3),B(1,1),C(﹣3,﹣1),△DEF与△ABC关于y轴对称,且A,B,C依次对应D,E,F,
(1)请写出D,E,F的坐标.
(2)在平面直角坐标系中画出△ABC和△DE
A.
(3)经过计算△DEF各边长度,发现DE、EF、FD满足什么关系式,写出关系式.
(4)求△DEF的面积.
同类题4
如图(1),是两个全等的直角三角形(直角边分别为
a
,
b
,斜边为
c
).
(1)用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:
a
2
+
b
2
=
c
2
;
(2)用这样的两个三角形可以拼出多种四边形,画出周长最大的四边形;当
a
=2,
b
=4时,求这个四边形的周长.
同类题5
(1)如图①是一个重要公式的几何解释.请你写出这个公式;
(2)如图②,Rt△ABC≌Rt△CDE,∠B=∠D=90°,且B、C、D三点在一条直线上.试证明∠ACE=90°;
(3)伽菲尔德(G
a
rfield,1881年任美国第20届总统)利用(1)中的公式和图②证明了勾股定理(1876年4月1日,发表在《新英格兰教育日志》上),现请你尝试该证明过程.
相关知识点
图形的性质
三角形
勾股定理
勾股定理及应用
勾股定理
勾股定理的证明方法