勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,,点都是矩形的边上,则矩形的面积为(    )
A.B.C.D.
当前题号:1 | 题型:单选题 | 难度:0.99
通过整式乘法的学习,我们进一步了解了利用图形面积来说明法则、公式等的正确性的方法,例如利用图甲可以对平方差公式给予解释.图乙中的是一个直角三角形,,人们很早就发现直角三角形的三边满足的关系.图丙是2002年国际数学家大会的会徽,选定的是我国古代数学家赵爽用来证明勾股定理的弦图,弦图是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边长为,较长直角边长为,求出的值.
当前题号:2 | 题型:解答题 | 难度:0.99
据我囯古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三,股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.
(应用举例)
观察3,4,5; 5,12,13; 7,24,25;…
可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且勾为3时,股,弦;勾为5时,股,弦
请仿照上面两组样例,用发现的规律填空:
(1)如果勾为7,则股24=__________;弦25=___________.
(2)如果勾用,且为奇数)表示时,请用含有的式子表示股和弦,则股=________;弦=_______.
(3)继续观察①4,3,5;②6,8,10;③8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.请你直接用为偶数且)的代数式来表示直角三角形的另一条直角边和弦的长.
当前题号:3 | 题型:解答题 | 难度:0.99
我国古代称直角三角形为“勾股形”,并且直角边中较短边为勾,另一直角边为股,斜边为弦.如图1所示,数学家刘徽(约公元225年—公元295年)将勾股形分割成一个正方形和两对全等的直角三角形,后人借助这种分割方法所得的图形证明了勾股定理.如图2所示的长方形,是由两个完全相同的“勾股形”拼接而成,若,则长方形的面积为______.
当前题号:4 | 题型:填空题 | 难度:0.99
如图是美国总统Garfield于1896年给出的一种验证勾股定理的办法,你能利用它证明勾股定理吗?请写出你的证明过程.(提示:下面图中的三个三角形均是直角三角形,围成的梯形是直角梯形)
当前题号:5 | 题型:解答题 | 难度:0.99
如图,用4个相同的直角三角形与一个小正方形拼成的大正方形,若图中直角三角形较短的直角边长是5,小正方形的边长是7,则大正方形的面积是(   )
A.121B.144C.169D.196
当前题号:6 | 题型:单选题 | 难度:0.99
我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM 2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:
(1)叙述勾股定理(用文字及符号语言叙述);
(2)证明勾股定理;
(3)若大正方形的面积是,小正方形的面积是,求的值.
当前题号:7 | 题型:解答题 | 难度:0.99
“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为(  )

A.3B.4C.5D.6
当前题号:8 | 题型:单选题 | 难度:0.99
“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为_____
当前题号:9 | 题型:填空题 | 难度:0.99
拼图填空:剪裁出若干个大小.形状完全相同的直角三角形,三边长分别记为a.b.c,如图①.

(1)拼图一:分别用4张直角三角形纸片,拼成如图②③的形状,观察图②③可发现,图②中两个小正方形的面积之和   (填“大于”.“小于”或“等于”)图③中小正方形的面积,用关系式表示为   .
(2)拼图二:用4张直角三角形纸片拼成如图④的形状,观察图形可以发现,图中共有  个正方形,它们的面积之间的关系是    ,用关系式表示为    .
(3)拼图三:用8个直角三角形纸片拼成如图⑤的形状,图中3个正方形的面积之间的关系是    ,用关系式表示 .
当前题号:10 | 题型:解答题 | 难度:0.99