- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- + 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知,等腰Rt△ABC,在直角边AB的左侧作直线AP,点B关于直线AP的对称点为E,连结BE,CE,其中CE交直线AP于点


A. (1)当∠PAB=29°时,求∠ACE的度数. (2)当0°<∠PAB<45°时,利用(图1),求∠BEC度数. (3)若45°<∠PAB<90°,用等式表示线段AB,FE,FC之间的数量关系,并证明. |


在△ABC中,∠BAC=90°,AB=AC.点D从点B出发沿射线BC移动,以AD为边在AB的右侧作△ADE,且∠DAE=90°,AD=AE.连接CE.

(1)如图1,若点D在BC边上,则∠BCE= °;
(2)如图2,若点D在BC的延长线上运动.
①∠BCE的度数是否发生变化?请说明理由;
②若BC=3,CD=6,则△ADE的面积为 .

(1)如图1,若点D在BC边上,则∠BCE= °;
(2)如图2,若点D在BC的延长线上运动.
①∠BCE的度数是否发生变化?请说明理由;
②若BC=3,CD=6,则△ADE的面积为 .
已知Rt△ABC的三边分别为a、b、c,则下列结论不可能成立的是( )
A.a2﹣b2=c2 | B.∠A﹣∠B=∠C |
C.∠A:∠B:∠C=3:4:5 | D.a:b:c=7:24:25 |
如图,在直角三角形ABC中,∠B=90°,以下式子成立的是( )


A.a2+b2=c2 | B.a2+c2=b2 | C.b2+c2=a2 | D.(a+c)2=b2 |
●特例感知
(1)①如图1,
为等腰直角三角形,则
(填“>“=”或
“<);
②如图2,
为
的高,若
,则
(填“>“=”或
“<);
●形成概念
若一个三角形中存在两边的平方差等于第三边上高的平方,则称这个三角形为金高三角形,两边的交点为金点.
●知识应用
(2)①如图3,
为金高三角形(
,其中
为金点,
是边
上的高,
若
,试求线段
的长度;
②如图4,等腰
为金高三角形,其中
,
为边
上的高,过点
作
,与边
交于点
.若
,试求线段
的长.
(1)①如图1,



“<);
②如图2,





“<);
●形成概念
若一个三角形中存在两边的平方差等于第三边上高的平方,则称这个三角形为金高三角形,两边的交点为金点.
●知识应用
(2)①如图3,





若


②如图4,等腰










