如图所示,椭圆中心在坐标原点,F为左焦点,当 时,其离心率为,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e等于(   )
A.B.
C.D.
当前题号:1 | 题型:单选题 | 难度:0.99
有对称中心的曲线叫做有心曲线,过有心曲线中心的弦叫做有心曲线的直径.定理:如果圆上异于一条直径两个端点的任意一点与这条直径两个端点连线的斜率存在,则这两条直线的斜率乘积为定值-1.写出该定理在有心曲线中的推广 .
当前题号:2 | 题型:填空题 | 难度:0.99
(本小题满分分)已知圆有以下性质:
①过圆上一点的圆的切线方程是.
②若为圆外一点,过作圆的两条切线,切点分别为,则直线的方程为.
③若不在坐标轴上的点为圆外一点,过作圆的两条切线,切点分别为,则垂直,即,且平分线段.
(1)类比上述有关结论,猜想过椭圆上一点的切线方程(不要求证明);
(2)过椭圆外一点作两直线,与椭圆相切于两点,求过两点的直线方程;
(3)若过椭圆外一点不在坐标轴上)作两直线,与椭圆相切于两点,求证:为定值,且平分线段.
当前题号:3 | 题型:解答题 | 难度:0.99
已知圆有以下性质:
①过圆上一点的圆的切线方程是.
②若不在坐标轴上的点为圆外一点,过作圆的两条切线,切点分别为,则垂直,即.
(1)类比上述有关结论,猜想过椭圆上一点的切线方程 (不要求证明);
(2)若过椭圆外一点不在坐标轴上)作两直线,与椭圆相切于两点,求证:为定值.
当前题号:4 | 题型:解答题 | 难度:0.99
为椭圆的左焦点,为椭圆的右顶点,为椭圆短轴上的一个顶点,当时,该椭圆的离心率为,将此结论类比到双曲线,得到的正确结论为()
A.设为双曲线的左焦点,为双曲线的右顶点,为双曲线虚轴上的一个顶点,当时,该双曲线的离心率为2
B.设为双曲线的左焦点,为双曲线的右顶点,为双曲线虚轴上的一个顶点,当时,该双曲线的离心率为4
C.设为双曲线的左焦点,为双曲线的右顶点,为双曲线虚轴上的一个顶点,当时,该双曲线的离心率为2
D.设为双曲线的左焦点,为双曲线的右顶点,为双曲线虚轴上的一个顶点,当时,该双曲线的离心率为4
当前题号:5 | 题型:单选题 | 难度:0.99
已知是双曲线上关于原点对称的两点,点是该双曲线上的任意一点.若直线的斜率都存在,则的值为定值.试类比上述双曲线的性质,得到椭圆的一个类似性质为:设是椭圆上关于原点对称的两点,点是椭圆上的任意一点.若直线的斜率都存在,则的值为定值,该定值为__________.
当前题号:6 | 题型:填空题 | 难度:0.99
出租车几何学是由十九世纪的赫尔曼·闵可夫斯基所创立的。在出租车几何学中,点还是形如的有序实数对,直线还是满足的所有组成的图形,角度大小的定义也和原来一样,直角坐标系内任意两点定义它们之间的一种“距离”:,请解决以下问题:
(1)求线段上一点到点的“距离”;
(2)定义:“圆”是所有到定点“距离”为定值的点组成的图形,求“圆”上的所有点到点的“距离”均为的“圆”方程,并求该“圆”围成的图形的面积;
(3)若点到点的“距离”和点到点的“距离”相等,其中实数满足,求所有满足条件的点的轨迹的长之和.
当前题号:7 | 题型:解答题 | 难度:0.99
已知直线与圆交于两点,线段的中点,则.试用类比思想,对椭圆写出结论:______.
当前题号:8 | 题型:填空题 | 难度:0.99
(1)求证:椭圆中斜率为的平行弦的中点轨迹必过椭圆中心;
(2)用作图方法找出下面给定椭圆的中心;
(3)我们把由半椭圆与半椭圆合成的曲线称作“果圆”,其中.如图,设点是相应椭圆的焦点,是“果圆” 与轴的交点. 连结“果圆”上任意两点的线段称为“果圆”的弦.试研究:是否存在实数,使斜率为的“果圆”平行弦的中点轨迹总是落在某个椭圆上?若存在,求出所有可能的值,若不存在,说明理由.
当前题号:9 | 题型:解答题 | 难度:0.99
定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆
(1)若椭圆,判断是否相似?如果相似,求出的相似比;如果不相似,请说明理由;
(2)写出与椭圆相似且短半轴长为的椭圆的方程;若在椭圆上存在两点关于直线对称,求实数的取值范围.
当前题号:10 | 题型:解答题 | 难度:0.99