- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 类比推理概念辨析
- + 圆锥曲线中的类比推理
- 等差、等比数列中的类比推理
- 平面与空间中的类比
- 运算法则的类比
- 解题方法的类比
- 其他类比
- 合情推理概念辨析
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,椭圆中心在坐标原点,F为左焦点,当
时,其离心率为
,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e等于( )




A.![]() | B.![]() |
C.![]() | D.![]() |
有对称中心的曲线叫做有心曲线,过有心曲线中心的弦叫做有心曲线的直径.定理:如果圆
上异于一条直径两个端点的任意一点与这条直径两个端点连线的斜率存在,则这两条直线的斜率乘积为定值-1.写出该定理在有心曲线
中的推广 .


(本小题满分
分)已知圆
有以下性质:
①过圆
上一点
的圆的切线方程是
.
②若
为圆
外一点,过
作圆
的两条切线,切点分别为
,则直线
的方程为
.
③若不在坐标轴上的点
为圆
外一点,过
作圆
的两条切线,切点分别为
,则
垂直
,即
,且
平分线段
.
(1)类比上述有关结论,猜想过椭圆
上一点
的切线方程(不要求证明);
(2)过椭圆
外一点
作两直线,与椭圆相切于
两点,求过
两点的直线方程;
(3)若过椭圆
外一点
(
不在坐标轴上)作两直线,与椭圆相切于
两点,求证:
为定值,且
平分线段
.


①过圆



②若







③若不在坐标轴上的点










(1)类比上述有关结论,猜想过椭圆


(2)过椭圆




(3)若过椭圆







已知圆
有以下性质:
①过圆
上一点
的圆的切线方程是
.
②若不在坐标轴上的点
为圆
外一点,过
作圆
的两条切线,切点分别为
,则
垂直
,即
.
(1)类比上述有关结论,猜想过椭圆
上一点
的切线方程 (不要求证明);
(2)若过椭圆
外一点
(
不在坐标轴上)作两直线,与椭圆相切于
两点,求证:
为定值.

①过圆



②若不在坐标轴上的点








(1)类比上述有关结论,猜想过椭圆


(2)若过椭圆





设
为椭圆的左焦点,
为椭圆的右顶点,
为椭圆短轴上的一个顶点,当
时,该椭圆的离心率为
,将此结论类比到双曲线,得到的正确结论为()





A.设![]() ![]() ![]() ![]() |
B.设![]() ![]() ![]() ![]() |
C.设![]() ![]() ![]() ![]() |
D.设![]() ![]() ![]() ![]() |
已知
,
是双曲线
上关于原点对称的两点,点
是该双曲线上的任意一点.若直线
,
的斜率都存在,则
的值为定值.试类比上述双曲线的性质,得到椭圆
的一个类似性质为:设
,
是椭圆
上关于原点对称的两点,点
是椭圆上的任意一点.若直线
,
的斜率都存在,则
的值为定值,该定值为__________.















出租车几何学是由十九世纪的赫尔曼·闵可夫斯基所创立的。在出租车几何学中,点还是形如
的有序实数对,直线还是满足
的所有
组成的图形,角度大小的定义也和原来一样,直角坐标系内任意两点
定义它们之间的一种“距离”:
,请解决以下问题:
(1)求线段
上一点
到点
的“距离”;
(2)定义:“圆”是所有到定点“距离”为定值的点组成的图形,求“圆”上的所有点到点
的“距离”均为
的“圆”方程,并求该“圆”围成的图形的面积;
(3)若点
到点
的“距离”和点
到点
的“距离”相等,其中实数
满足
,求所有满足条件的点
的轨迹的长之和.





(1)求线段



(2)定义:“圆”是所有到定点“距离”为定值的点组成的图形,求“圆”上的所有点到点


(3)若点







(1)求证:椭圆
中斜率为
的平行弦的中点轨迹必过椭圆中心;
(2)用作图方法找出下面给定椭圆的中心;
(3)我们把由半椭圆
与半椭圆
合成的曲线称作“果圆”,其中
,
,
.如图,设点
,
,
是相应椭圆的焦点,
,
和
,
是“果圆” 与
,
轴的交点. 连结“果圆”上任意两点的线段称为“果圆”的弦.试研究:是否存在实数
,使斜率为
的“果圆”平行弦的中点轨迹总是落在某个椭圆上?若存在,求出所有可能的
值,若不存在,说明理由.



(2)用作图方法找出下面给定椭圆的中心;
(3)我们把由半椭圆





















定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆
.
(1)若椭圆
,判断
与
是否相似?如果相似,求出
与
的相似比;如果不相似,请说明理由;
(2)写出与椭圆
相似且短半轴长为
的椭圆
的方程;若在椭圆
上存在两点
、
关于直线
对称,求实数
的取值范围.

(1)若椭圆





(2)写出与椭圆







