- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- + 归纳推理
- 归纳推理概念辨析
- 数与式中的归纳推理
- 图与形中的归纳推理
- 类比推理
- 演绎推理
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
将正奇数按如图所示的规律排列,则第21行从左向右的第5个数为
1
3 5 7
9 11 13 15 17
19 21 23 25 27 29 31
……
1
3 5 7
9 11 13 15 17
19 21 23 25 27 29 31
……
A.811 | B.809 |
C.807 | D.805 |
设平面内有
条直线,其中有且仅有两条直线互相平行,任意三条直线不过同一点,若用
表示这
条直线交点的个数.
(1)求
;
(2)当
时,求
(用
表示).



(1)求

(2)当



已知数列数列{an}的通项公式an=(-1)n(2n-1)(n∈N*),Sn为其前n项和.
(1)求S1,S2,S3,S4的值;
(2)猜想Sn的表达式,并用数学归纳法证明你的结论.
(1)求S1,S2,S3,S4的值;
(2)猜想Sn的表达式,并用数学归纳法证明你的结论.
已知数列{an}中,a1=3,an+1=
+2(n∈N*).
(Ⅰ)计算a2,a3,a4的值;
(Ⅱ)根据计算结果猜想{an}的通项公式,并用数学归纳法加以证明.

(Ⅰ)计算a2,a3,a4的值;
(Ⅱ)根据计算结果猜想{an}的通项公式,并用数学归纳法加以证明.
如图,在平面直角坐标系的格点(横、纵坐标均为整数的点)处:点(1,0)处标b1,点(1,-1)处标b2,点(0,-1)处标b3,点(-1,-1)处标b4,点(-1,0)处标b5,点(-1,1)处标b6,点(0,1)处标b7,…,以此类推,则b2017处的格点的坐标为________. 
