- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- + 合情推理与演绎推理
- 归纳推理
- 类比推理
- 演绎推理
- 直接证明与间接证明
- 数学归纳法
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下图是一系列有机物的结构简图,图中“小黑点”表示原子,两黑点之间的“短线”表示化学键,按图中结构第10个图中有化学键的个数是


A.60 | B.51 | C.49 | D.42 |
已知下面五个命题:
①归纳推理是由部分到整体的推理; ②归纳推理是由一般到一般的推理;
③演绎推理是由一般到特殊的推理; ④类比推理是由特殊到一般的推理;
⑤类比推理是由特殊到特殊的推理.
表述正确的是 .
①归纳推理是由部分到整体的推理; ②归纳推理是由一般到一般的推理;
③演绎推理是由一般到特殊的推理; ④类比推理是由特殊到一般的推理;
⑤类比推理是由特殊到特殊的推理.
表述正确的是 .
观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a8+b8=( )
A.28 | B.47 | C.76 | D.123 |
在计算“1×2+2×3+...+n(n+1)”时,某同学学到了如下一种方法:
先改写第k项:k(k+1)=
由此得1×2=
.
.
.............
.
相加,得1×2+2×3+...+n(n+1)
.
类比上述方法,请你计算“1×2×3×4+2×3×4×+....+
”,其结果是_________________.(结果写出关于
的一次因式的积的形式)
先改写第k项:k(k+1)=

由此得1×2=


.............

相加,得1×2+2×3+...+n(n+1)

类比上述方法,请你计算“1×2×3×4+2×3×4×+....+


在
中,不等式
成立;在凸四边形ABCD中,
不等式
成立;在凸五边形ABCDE中,不等式
成立,…,依此类推,在凸n边形
中,不等式
_____成立.


不等式




已知双曲正弦函数
和双曲作弦函数
与我们学过的正弦函数和余弦函数有许多类似的性质,请类比正弦函数和余弦函数的和角或差角公式,写出双曲正弦或双曲余弦函数的一个类似的正确结论______________.


若ABC的三边长分别为a, b, c,其内切圆半径为r,则S△ABC=(a+b+c)·r,
类比这一结论到空间,写出三棱锥中的一个正确结论为
类比这一结论到空间,写出三棱锥中的一个正确结论为