- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- + 合情推理与演绎推理
- 归纳推理
- 类比推理
- 演绎推理
- 直接证明与间接证明
- 数学归纳法
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知直线
,平面
,且
,给出下列命题( )
①若
∥
,则m⊥; ②若
⊥
,则m∥;
③若m⊥,则
∥
; ④若m∥,则
⊥
其中正确命题的个数是( )



①若




③若m⊥,则




其中正确命题的个数是( )
A.1 | B.2 | C.3 | D.4 |
半径为r的圆的面积S(r)=
r2,周长C(r)=2
r,若将r看作(0,+∞)上的变量,则(
r2)'=2
r①,①式用语言可以叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R的球,若将R看作(0,+∞)上的变量,请写出类比①的等式:______ ;上式用语言可以叙述为______ .




下面是一段演绎推理:
如果直线平行于平面,则这条直线平行于平面内的所有直线;
已知直线
平面
,直线
平面
;
所以直线
直线
,在这个推理中( )
如果直线平行于平面,则这条直线平行于平面内的所有直线;
已知直线




所以直线


A.大前提正确,结论错误 |
B.小前提与结论都是错误的 |
C.大、小前提正确,只有结论错误 |
D.大前提错误,结论错误 |
观察下列算式:
13=1,
23=3+5,
33=7+9+11,
43=13+15+17+19,
……
若某数n3按上述规律展开后,发现等式右边含有“2013”这个数,则n=________.
13=1,
23=3+5,
33=7+9+11,
43=13+15+17+19,
……
若某数n3按上述规律展开后,发现等式右边含有“2013”这个数,则n=________.
如图是见证魔术师“论证”64=65飞神奇.对这个乍看起来颇为神秘的现象,我们运用数学知识不难发现其中的谬误.另外,我们可以更换图中的数据,就能构造出许多更加直观与“令人信服”的“论证”.

请你用数列知识归纳:(1)这些图中的数所构成的数列:________;(2)写出与这个魔术关联的一个数列递推关系式:________.

请你用数列知识归纳:(1)这些图中的数所构成的数列:________;(2)写出与这个魔术关联的一个数列递推关系式:________.
如果一个凸多面体是n棱锥,那么这个凸多面体的所有顶点所确定的直线共有_____条,这些直线中共有
对异面直线,则
;f(n)=______(答案用数字或n的解析式表示)

