- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量的均值
- 常用分布的均值
- + 离散型随机变量的方差
- 离散型随机变量的方差与标准差
- 方差的性质
- 方差的期望表示
- 常用分布的方差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为
与
,且乙投球3次均未命中的概率为
,甲投球未命中的概率恰是乙投球未命中的概率的2倍.
(Ⅰ)求乙投球的命中率
;
(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为
,求
的分布列和数学期望.



(Ⅰ)求乙投球的命中率

(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为


中国北斗卫星导航系统是中国自行研制的全球卫星导航系统,作为国家战略性空间基础设施,我国北斗卫星导航系统不仅对国防安全意义重大,而且在民用领域的精准化应用也越来越广泛.据统计,2016年卫星导航与位置服务产业总产值达到2118亿元,较2015年约增长
.下面是40个城市北斗卫星导航系统与位置服务产业的产值(单位:万元)的频率分布直方图:

(1)根据频率分布直方图,求产值小于500万元的城市个数;
(2)在上述抽取的40个城市中任取2个,设
为产值不超过500万元的城市个数,求
的分布列及期望和方差.


(1)根据频率分布直方图,求产值小于500万元的城市个数;
(2)在上述抽取的40个城市中任取2个,设


下列关于正态分布
的命题:
①正态曲线关于
轴对称;
②当
一定时,
越大,正态曲线越“矮胖”,
越小,正态曲线越“瘦高”;
③设随机变量
,则
的值等于2;
④当
一定时,正态曲线的位置由
确定,随着
的变化曲线沿
轴平移.
其中正确的是( )

①正态曲线关于

②当



③设随机变量


④当




其中正确的是( )
A.①② | B.③④ | C.②④ | D.①④ |
某企业有甲、乙两个研发小组,他们研究新产品成功的概率分别为
和
,现安排甲组研发新产品
,乙组研发新产品
,设甲、乙两组的研发相互独立.
(1)求恰好有一种新产品研发成功的概率;
(2)若新产品
研发成功,预计企业可获得利润120万元,不成功则会亏损50万元;若新产品
研发成功,企业可获得利润100万元,不成功则会亏损40万元,求该企业获利
万元的分布列.




(1)求恰好有一种新产品研发成功的概率;
(2)若新产品



甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所出次品数分别为
,
,且
和
的分布列为:
试比较两名工人谁的技术水平更高.




![]() | 0 | 1 | 2 | |||
![]() | ![]() | ![]() | ![]() | |||
![]() | 0 | 1 | 2 | |||
![]() | ![]() | ![]() | ![]() | |||
试比较两名工人谁的技术水平更高.
某品牌汽车的
店,对最近100份分期付款购车情况进行统计,统计情况如下表所示.已知分9期付款的频率为0.4;该店经销一辆该品牌汽车,若顾客分3期付款,其利润为1万元;分6期或9期付款,其利润为2万元;分12期付款,其利润为3万元.
(1)若以上表计算出的频率近似替代概率,从该店采用分期付款购车的顾客(数量较大)中随机抽取3为顾客,求事件
:“至多有1位采用分6期付款“的概率
;
(2)按分层抽样方式从这100为顾客中抽取5人,再从抽取的5人中随机抽取3人,记该店在这3人身上赚取的总利润为随机变量
,求
的分布列和数学期望
.

付款方式 | 分3期 | 分6期 | 分9期 | 分12期 |
频数 | 20 | 20 | ![]() | ![]() |
(1)若以上表计算出的频率近似替代概率,从该店采用分期付款购车的顾客(数量较大)中随机抽取3为顾客,求事件


(2)按分层抽样方式从这100为顾客中抽取5人,再从抽取的5人中随机抽取3人,记该店在这3人身上赚取的总利润为随机变量


