- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量的均值
- 常用分布的均值
- + 离散型随机变量的方差
- 离散型随机变量的方差与标准差
- 方差的性质
- 方差的期望表示
- 常用分布的方差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某房屋开发公司根据市场调查,计划在2017年开发的楼盘中设计“特大套”、“大套”、“经济适
用房”三类商品房,每类房型中均有舒适和标准两种型号.某年产量如下表:
若按分层抽样的方法在这一年生产的套房中抽取50套进行检测,则必须抽取“特大套”套房10套, “大套”15套.
(1)求
,
的值;
(2)在年终促销活动中,奖给了某优秀销售公司2套舒适型和3套标准型“经济适用型”套房,该销售公司又从中随机抽取了2套作为奖品回馈消费者.求至少有一套是舒适型套房的概率;
(3)今从“大套”类套房中抽取6套,进行各项指标综合评价,并打分如下:
现从上面6个分值中随机的一个一个地不放回抽取,规定抽到数9.6或9.7,抽取工作即停止.记在抽取到数9.6或9.7所进行抽取的次数为
,求
的分布列及数学期望.
用房”三类商品房,每类房型中均有舒适和标准两种型号.某年产量如下表:
房型 | 特大套 | 大套 | 经济适用房 |
舒适 | 100 | 150 | ![]() |
标准 | 300 | ![]() | 600 |
若按分层抽样的方法在这一年生产的套房中抽取50套进行检测,则必须抽取“特大套”套房10套, “大套”15套.
(1)求


(2)在年终促销活动中,奖给了某优秀销售公司2套舒适型和3套标准型“经济适用型”套房,该销售公司又从中随机抽取了2套作为奖品回馈消费者.求至少有一套是舒适型套房的概率;
(3)今从“大套”类套房中抽取6套,进行各项指标综合评价,并打分如下:

现从上面6个分值中随机的一个一个地不放回抽取,规定抽到数9.6或9.7,抽取工作即停止.记在抽取到数9.6或9.7所进行抽取的次数为


某地区拟建立一个艺术博物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从
个招标问题中随机抽取
个问题,已知这
个招标问题中,甲公司可正确回答其中的
道題目,而乙公司能正确回答毎道题目的概率均为
,甲、乙两家公司对每题的回答都是相互独立,互不影响的.
(1)求甲、乙两家公司共答对
道题目的概率;
(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?





(1)求甲、乙两家公司共答对

(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?
甲、乙两人轮流射击,每人每次射击一次,先射中者获胜,射击进行到有人获胜或每人都已射击
次时结束.设甲每次射击命中的概率为
,乙每次射击命中的概率为
,且每次射击互不影响,约定由甲先射击. (1)求甲获胜的概率;
(2)求射击结束时甲的射击次数
的分布列和数学期望
.



(2)求射击结束时甲的射击次数


某大型超市拟对店庆当天购物满
元的顾客进行回馈奖励.规定:顾客转动十二等分且质地均匀的圆形转盘(如图),待转盘停止转动时,若指针指向扇形区域,则顾客可领取此区域对应面额(单位:元)的超市代金券.假设转盘每次转动的结果互不影响.
(Ⅰ)若
,求顾客转动一次转盘获得
元代金券的概率;
(Ⅱ)某顾客可以连续转动两次转盘并获得相应奖励,当
时,求该顾客第一次获得代金券的面额不低于第二次获得代金券的面额的概率;
(Ⅲ)记顾客每次转动转盘获得代金券的面额为
,当
取何值时,
的方差最小?

(结论不要求证明)

(Ⅰ)若


(Ⅱ)某顾客可以连续转动两次转盘并获得相应奖励,当

(Ⅲ)记顾客每次转动转盘获得代金券的面额为




(结论不要求证明)
一家医药研究所,从中草药中提取并合成了甲、乙两种抗“
病毒”的药物,经试验,服用甲、乙两种药物痊愈的概率分别为
.现已进入药物临床试用阶段,每个试用组由4位该病毒的感染者组成,其中2人试用甲种抗病毒药物,2人试用乙种抗病毒药物,如果试用组中,甲种抗病毒药物治愈人数超过乙种抗病毒药物的治愈人数,则称该组为“甲类组”.
(1)求一个试用组为“甲类组”的概率;
(2)观察3个试用组,用
表示这3个试用组中“甲类组”的个数,求
的分布列和数学期望.


(1)求一个试用组为“甲类组”的概率;
(2)观察3个试用组,用


某综艺节目为增强娱乐性,要求现场嘉宾与其场外好友连线互动.凡是拒绝表演节目的好友均无连线好友的机会;凡是选择表演节目的好友均需连线未参加过此活动的
个好友参与此活动,以此下去.
(Ⅰ)假设每个人选择表演与否是等可能的,且互不影响,则某人选择表演后,其连线的
个好友中不少于
个好友选择表演节目的概率是多少?
(Ⅱ)为调查“选择表演者”与其性别是否有关,采取随机抽样得到如下列表:
①根据表中数据,是否有
的把握认为“表演节目”与好友的性别有关?
②将此样本的频率视为总体的概率,随机调查
名男性好友,设
为
个人中选择表演的人数,求
的分布列和期望.
附:
;

(Ⅰ)假设每个人选择表演与否是等可能的,且互不影响,则某人选择表演后,其连线的


(Ⅱ)为调查“选择表演者”与其性别是否有关,采取随机抽样得到如下列表:
| 选择表演 | 拒绝表演 | 合计 |
男 | 50 | 10 | 60 |
女 | 10 | 10 | 20 |
合计 | 60 | 20 | 80 |
①根据表中数据,是否有

②将此样本的频率视为总体的概率,随机调查




附:

![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |