- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 独立事件的判断
- 相互独立事件与互斥事件
- + 独立事件的乘法公式
- 独立事件的实际应用
- 递推法求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲盒中有200个螺杆,其中有160个A型的,乙盒中有240个螺母,其中有180个A型的.从甲、乙两盒中各任取一个,则恰好可配成A型螺栓的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
甲、乙两队进行排球决赛,现在的情形是,甲队只要再赢一局就获得冠军,乙队需要再赢两局才能获得冠军,若两队的水平相当,求甲队获得冠军的概率.
本着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算),有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为
,
,两小时以上且不超过三小时还车的概率分别是
,
,两人租车时间都不会超过四小时,则甲、乙两人所付的租车费用相同的概率为_______.




某商场为了吸引大家,规定:购买一定价值的商品可以获得一张奖券,奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动,已知甲有一张该商场的奖券,且每次兑奖活动的中奖概率都是0.05,求:
(1)甲中两次奖的概率;
(2)甲中一次奖的概率;
(3)甲不中奖的概率.
(1)甲中两次奖的概率;
(2)甲中一次奖的概率;
(3)甲不中奖的概率.
同学甲参加某科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错或不答均得零分.假设同学甲答对第一、二、三个问题的概率分别为0.8,0.6,0.5,且各题答对与否相互之间没有影响,则同学甲得分不低于300分的概率是_______.
高三年级有3名男生和1名女生为了报某所大学,事先进行了多方详细咨询,并根据自己的高考成绩情况,最终估计这3名男生报此所大学的概率都是
,这1名女生报此所大学的概率是
,且这4人报此所大学互不影响.
(1)求这4名学生中报这所大学的男生人数与女生人数相等的概率;
(2)在报考这所大学的上述4名学生中,记
为报这所大学的男生和女生人数的和,试求
的分布列.


(1)求这4名学生中报这所大学的男生人数与女生人数相等的概率;
(2)在报考这所大学的上述4名学生中,记

