- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一个袋子中装有大小形状完全相同的编号分别为1,2,3,4,5的5个红球与编号为1,2,3,4
的4个白球,从中任意取出3个球.
(1)求取出的3个球颜色相同且编号是三个连续整数的概率;
(2)求取出的3个球中恰有2个球编号相同的概率;
(3)设X为取出的3个球中编号的最大值,求X的分布列与数学期望.
的4个白球,从中任意取出3个球.
(1)求取出的3个球颜色相同且编号是三个连续整数的概率;
(2)求取出的3个球中恰有2个球编号相同的概率;
(3)设X为取出的3个球中编号的最大值,求X的分布列与数学期望.
选修4-4:坐标系与参数方程
元旦期间,某轿车销售商为了促销,给出了两种优惠方案,顾客只能选择其中的一种.方案一:每满
万
元,可减
千元;方案二:金额超过
万元(含
万元),可摇号三次,其规则是依次从装有
个幸运号、
个吉祥号的一号摇号机,装有
个幸运号、
个吉祥号的二号摇号机,装有
个幸运号、
个吉祥号的三号摇号机各摇号一次,其优惠情况为:若摇出
个幸运号则打
折,若摇出
个幸运号则打
折;若摇出
个幸运号则打
折;若没摇出幸运号则不打折.
(1)若某型号的车正好
万元,两个顾客都选择第二种方案,求至少有一名顾客比选择方案一更优惠的概率;
(2)若你朋友看中了一款价格为
万的便型轿车,请用所学知识帮助你朋友分析一下应选择哪种付款方案.
元旦期间,某轿车销售商为了促销,给出了两种优惠方案,顾客只能选择其中的一种.方案一:每满

元,可减















(1)若某型号的车正好

(2)若你朋友看中了一款价格为

随着网络营销和电子商务的兴起,人们的购物方式更具多样化.某调查机构随机抽取8名购物者进行采访,4名男性购物者中有3名倾向于网购,1名倾向于选择实体店,4名女性购物者中有2名倾向于选择网购,2名倾向于选择实体店.
(1)若从8名购物者中随机抽取2名,其中男女各一名,求至少1名倾向于选择实体店的概率:
(2)若从这8名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求X的分布列和数学期望.
(1)若从8名购物者中随机抽取2名,其中男女各一名,求至少1名倾向于选择实体店的概率:
(2)若从这8名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求X的分布列和数学期望.
甲、乙、丙三名音乐爱好者参加某电视台举办的演唱技能海选活动,在本次海选中有合格和不合格两个等级.若海选合格记1分,海选不合格记0分.假设甲、乙、丙海选合格的概率分别为
,他们海选合格与不合格是相互独立的.
(1)求在这次海选中,这三名音乐爱好者至少有一名海选合格的概率;
(2)记在这次海选中,甲、乙、丙三名音乐爱好者所得分之和为随机变量
,求随机变量
的分布列和数学期望
.

(1)求在这次海选中,这三名音乐爱好者至少有一名海选合格的概率;
(2)记在这次海选中,甲、乙、丙三名音乐爱好者所得分之和为随机变量



一个袋中装有
个形状大小完全相同的小球,球的编号分别为
,
,
,
,
,
.
(Ⅰ)若从袋中每次随机抽取
个球,有放回的抽取
次,求取出的两个球编号之和为
的概率.
(Ⅱ)若从袋中每次随机抽取
个球,有放回的抽取
次,求恰有
次抽到
号球的概率.
(Ⅲ)若一次从袋中随机抽取
个球,记球的最大编号为
,求随机变量
的分布列.
(Ⅳ)若从袋中每次随机抽取
个球,有放回的抽取
次,记球的最大编号为
,求随机变量
的分布列.







(Ⅰ)若从袋中每次随机抽取



(Ⅱ)若从袋中每次随机抽取




(Ⅲ)若一次从袋中随机抽取



(Ⅳ)若从袋中每次随机抽取




某商场按月订购一种家用电暖气,每销售一台获利润200元,未销售的产品返回厂家,每台亏损50元,根据往年的经验,每天的需求量与当天的最低气温有关,如果最低气温位于区间
,需求量为100台;最低气温位于区间
,需求量为200台;最低气温位于区间
,需求量为300台.公司销售部为了确定11月份的订购计划,统计了前三年11月份各天的最低气温数据,得到下面的频数分布表:
以最低气温位于各区间的频率代替最低气温位于该区间的概率.
(1)求11月份这种电暖气每日需求量
(单位:台)的分布列;
(2)若公司销售部以每日销售利润
(单位:元)的数学期望为决策依据,计划11月份每日订购200台或250台,两者之中选其一,应选哪个?



最低气温(℃) | ![]() | ![]() | ![]() | ![]() | ![]() |
天数 | 11 | 25 | 36 | 16 | 2 |
以最低气温位于各区间的频率代替最低气温位于该区间的概率.
(1)求11月份这种电暖气每日需求量

(2)若公司销售部以每日销售利润

甲、乙两运动员进行射击训练,已知他们击中的环数都稳定在7,8,9,10环,且每次射击成绩互不影响.射击环数的频率分布条形图如下:

若将频率视为概率,回答下列问题:
(1)求甲运动员在3次射击中至少有1次击中9环以上(含9环)的概率;
(2)若甲、乙两运动员各自射击1次,
表示这2次射击中击中9环以上(含9环)的次数,求
的分布列及期望
.

若将频率视为概率,回答下列问题:
(1)求甲运动员在3次射击中至少有1次击中9环以上(含9环)的概率;
(2)若甲、乙两运动员各自射击1次,



某中学校本课程开设了A、B、C、D共4门选修课,每个学生必须且只能选修1门选修课,现有该校的甲、乙、丙3名学生:
(Ⅰ)求这3名学生选修课所有选法的总数;
(Ⅱ)求恰有2门选修课没有被这3名学生选择的概率;
(Ⅲ)求A选修课被这3名学生选择的人数
的分布列 .
(Ⅰ)求这3名学生选修课所有选法的总数;
(Ⅱ)求恰有2门选修课没有被这3名学生选择的概率;
(Ⅲ)求A选修课被这3名学生选择的人数

如图,设P1,P2,…,P6为单位圆上逆时针均匀分布的六个点.现任选其中三个不同点构成一个三角形,记该三角形的面积为随机变量S.
(1)求S=
的概率;
(2)求S的分布列及数学期望E(S).
(1)求S=

(2)求S的分布列及数学期望E(S).
