- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从装有6个白球、4个黑球和2个黄球的箱中随机地取出两个球,规定每取出一个黑球赢2元,而每取出一个白球输1元,取出黄球无输贏,以X表示赢得的钱数,随机变量X可以取哪些值呢?求X的分布列.
2018年“双十一”期间,某商场举办了一次有奖促销活动,顾客消费每满1000元可参加一次抽奖(例如:顾客甲消费930元,不得参与抽奖;顾客乙消费3400元,可以抽奖三次).如图1,在圆盘上绘制了标有A,B,C,D的八个扇形区域,每次抽奖时由顾客按动按钮使指针旋转一次,旋转结束时指针会随机停在圆盘上的某一个位置,顾客获奖的奖次由指针所指区域决定(指针与区域边界线粗细忽略不计).商家规定:指针停在标A,B,C,D的扇形区域分别对应的奖金为200元、150元、100元和50元.已知标有A,B,C,D的扇形区域的圆心角成等差数列,且标D的扇形区域的圆心角是标A的扇形区域的圆心角的4倍.

(I)某顾客只抽奖一次,设该顾客抽奖所获得的奖金数为X元,求X的分布列和数学期望;
(II)如图2,该商场统计了活动期间一天的顾客消费情况.现按照消费金额分层抽样选出15位顾客代表,其中获得奖金总数不足100元的顾客代表有7位.现从这7位顾客代表中随机选取两位,求这两位顾客的奖金总数和仍不足100元的概率.

(I)某顾客只抽奖一次,设该顾客抽奖所获得的奖金数为X元,求X的分布列和数学期望;
(II)如图2,该商场统计了活动期间一天的顾客消费情况.现按照消费金额分层抽样选出15位顾客代表,其中获得奖金总数不足100元的顾客代表有7位.现从这7位顾客代表中随机选取两位,求这两位顾客的奖金总数和仍不足100元的概率.
现有6人参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,主办方制作了一款电脑软件:按下电脑键盘“
”键则会出现模拟抛两枚质地均匀的骰子的画面,若干秒后在屏幕上出现两个点数
和
,并在屏幕的下方计算出
的值.主办方现规定:每个人去按“
”键,当显示出来的
小于
时则参加甲游戏,否则参加乙游戏.
(1)求这6个人中恰有2人参加甲游戏的概率;
(2)用
、
分别表示这6个人中去参加甲,乙游戏的人数,记
,求随机变量
的分布列与数学期望
.







(1)求这6个人中恰有2人参加甲游戏的概率;
(2)用





高一年级某个班分成8个小组,利用假期参加社会公益服务活动
每个小组必须全员参加
,参加活动的次数记录如下:
Ⅰ
从这8个小组中随机选出2个小组在全校进行活动汇报
求“选出的2个小组参加社会公益服务活动次数相等”的概率;
Ⅱ
记每个小组参加社会公益服务活动的次数为X.
求X的分布列和数学期望EX;
至
几小组每组有4名同学,
小组有5名同学记“该班学生参加社会公益服务活动的平均次数”为
,写出
与EX的大小关系
结论不要求证明
.


组别 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
参加活动次数 | 3 | 2 | 4 | 3 | 2 | 4 | 1 | 3 |













某厂销售部以箱为单位销售某种零件,每箱的定价为200元,低于100箱按原价销售;不低于100箱通过双方议价,买方能以优惠8%成交的概率为0.6,以优惠6%成交的概率为0.4.
(1)甲、乙两单位都要在该厂购买150箱这种零件,两单位各自达成的成交价相互独立,求甲单位优惠比例不低于乙单位优惠比例的概率;
(2)某单位需要这种零件650箱,求购买总价X的数学期望.
(1)甲、乙两单位都要在该厂购买150箱这种零件,两单位各自达成的成交价相互独立,求甲单位优惠比例不低于乙单位优惠比例的概率;
(2)某单位需要这种零件650箱,求购买总价X的数学期望.
甲、乙两人参加某种选拔测试.规定每人必须从备选的6道题中随机抽出3道题进行测试,在备选的6道题中,甲答对其中每道题的概率都是
,乙只能答对其中的3道题.答对一题加10分,答错一题(不答视为答错)得0分.
(1)求乙得分的分布列和数学期望;
(2)规定:每个人至少得20分才能通过测试,求甲、乙两人中至少有一人通过测试的概率.

(1)求乙得分的分布列和数学期望;
(2)规定:每个人至少得20分才能通过测试,求甲、乙两人中至少有一人通过测试的概率.
为庆祝建国70周年,校园文化节举行有奖答题活动,现有A,B两种题型,从A类题型中抽取1道,从B类题型中抽取2道回答,答对3道题获新华书店面值为15元的图书代金券,答对2道题获面值为10元的图书代金券,答对1道题获面值为5元的图书代金券,没有答对获面值为1元的图书代金券(作为鼓励).甲同学参加此活动答对A类题的概率为
,答对B类题的概率为
.
(Ⅰ)求甲答对1道题的概率;
(Ⅱ)设甲参加一次活动所获图书代金券的面值为随机变量X,求X的分布列和数学期望.


(Ⅰ)求甲答对1道题的概率;
(Ⅱ)设甲参加一次活动所获图书代金券的面值为随机变量X,求X的分布列和数学期望.
有编号为1,2,3,…,n的n个学生,入座编号为1,2,3,…,n的n个座位,每个学生规定坐一个座位,设学生所坐的座位号与该生的编号不同的学生人数为X,已知X=2时,共有6种坐法.
(1)求n的值;
(2)求随机变量X的分布列.
(1)求n的值;
(2)求随机变量X的分布列.
喜羊羊家族的四位成员与灰太狼、红太狼进行谈判,通过谈判他们握手言和,准备一起照合影像(排成一排).
(1)要求喜羊羊家族的四位成员必须相邻,有多少种排法?
(2)要求灰太狼、红太狼不相邻,有多少种排法?
(3)记灰太狼和红太狼之间的喜羊羊家族的成员个数为
,求
的概率分布.
(1)要求喜羊羊家族的四位成员必须相邻,有多少种排法?
(2)要求灰太狼、红太狼不相邻,有多少种排法?
(3)记灰太狼和红太狼之间的喜羊羊家族的成员个数为


将
封不同的信投进
这
个不同的信箱,假设每封信投入每个信箱的可能性相等.
(1)求这
封信分别被投进
个信箱的概率;
(2)求恰有
个信箱没有信的概率;
(3)求
信箱中信的数量的分布列和数学期望.



(1)求这


(2)求恰有

(3)求
