- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某大学为了更好提升学校文化品位,发挥校园文化的教育功能特举办了校园文化建设方案征集大赛,经评委会初评,有两个优秀方案入选.为了更好充分体现师生的主人翁意识,组委会邀请了100名师生代表对这两个方案进行登记评价(登记从高到低依次为
),评价结果对应的人数统计如下表:
(Ⅰ)若从对1号方案评价为
的师生中任选3人,求这3人中至少有1人对1号方案评价为
的概率;
(Ⅱ)在
级以上(含
级),可获得2万元的奖励,
级奖励
万元,
级无奖励.若以此表格数据估计概率,随机请1名师生分别对两个方案进行独立评价,求两个方案获得的奖励总金额
(单位:万元)的分布列和数学期望.

编号 | 等级 | ||||
![]() | ![]() | ![]() | ![]() | ![]() | |
1号方案 | 8 | 41 | 26 | 15 | 10 |
2号方案 | 7 | 33 | 20 | 20 | 20 |
(Ⅰ)若从对1号方案评价为


(Ⅱ)在






为了让观赏游玩更便捷舒适,常州恐龙园推出了代步工具租用服务.已知有脚踏自行车
与电动自行车
两种车型,采用分段计费的方式租用.
型车每
分钟收费
元(不足
分钟的部分按
分钟计算),
型车每
分钟收费
元(不足
分钟的部分按
分钟计算),现有甲乙丙丁四人,分别相互独立地到租车点租车骑行(各租一车一次),设甲乙丙丁不超过
分钟还车的概率分别为
,并且四个人每人租车都不会超过
分钟,甲乙丙均租用
型车,丁租用
型车.
(1)求甲乙丙丁四人所付的费用之和为25元的概率;
(2)求甲乙丙三人所付的费用之和等于丁所付的费用的概率;
(3)设甲乙丙丁四人所付费用之和为随机变量
,求
的概率分布和数学期望.

















(1)求甲乙丙丁四人所付的费用之和为25元的概率;
(2)求甲乙丙三人所付的费用之和等于丁所付的费用的概率;
(3)设甲乙丙丁四人所付费用之和为随机变量


已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结果.
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列.
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列.
某产品按行业生产标准分成6个等级,等级系数ξ依次为1、2、3、4、5、6,按行业规定产品的等级系数ξ≥5的为一等品,3≤ξ<5的为二等品,ξ<3的为三等品.
若某工厂生产的产品均符合行业标准,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:
1 3 1 1 6 3 3 4 1 2
4 1 2 5 3 1 2 6 3 1
6 1 2 1 2 2 5 3 4 5
(1)以此30件产品的样本来估计该厂产品的总体情况,试分别求出该厂生产的产品为一等品、二等品和三等品的概率;
(2)已知该厂生产一件产品的利润y(单位:元)与产品的等级系数ξ的关系式为
,若从该厂大量产品中任取两件,其利润记为Z,求Z的分布列和均值.
若某工厂生产的产品均符合行业标准,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:
1 3 1 1 6 3 3 4 1 2
4 1 2 5 3 1 2 6 3 1
6 1 2 1 2 2 5 3 4 5
(1)以此30件产品的样本来估计该厂产品的总体情况,试分别求出该厂生产的产品为一等品、二等品和三等品的概率;
(2)已知该厂生产一件产品的利润y(单位:元)与产品的等级系数ξ的关系式为

某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为
.现有10件产品,其中6件是一等品,4件是二等品.
(1)随机选取1件产品,求能够通过检测的概率;
(2)随机选取3件产品,其中一等品的件数记为
,求
的分布列及数学期望..

(1)随机选取1件产品,求能够通过检测的概率;
(2)随机选取3件产品,其中一等品的件数记为


某单位有车牌尾号为
的汽车
和尾号为
的汽车
,两车分属于两个独立业务部分.对一段时间内两辆汽车的用车记录进行统计,在非限行日,
车日出车频率
,
车日出车频率
.该地区汽车限行规定如下:
现将汽车日出车频率理解为日出车概率,且
,
两车出车相互独立.
(I)求该单位在星期一恰好出车一台的概率.
(II)设
表示该单位在星期一与星期二两天的出车台数之和,求
的分布列及其数学期望
.








车尾号 | ![]() ![]() | ![]() ![]() | ![]() ![]() | ![]() ![]() | ![]() ![]() |
限行日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
现将汽车日出车频率理解为日出车概率,且


(I)求该单位在星期一恰好出车一台的概率.
(II)设



在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为
、
、
、
,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手进入第三轮才被淘汰的概率;
(Ⅱ)求该选手至多进入第三轮考核的概率;
(Ⅲ)该选手在选拔过程中回答过的问题个数记为
,求随机变量
的分布列和期望.




(Ⅰ)求该选手进入第三轮才被淘汰的概率;
(Ⅱ)求该选手至多进入第三轮考核的概率;
(Ⅲ)该选手在选拔过程中回答过的问题个数记为


为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记
表示学生的考核成绩,并规定
为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图:

(Ⅰ)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率;
(Ⅱ)从图中考核成绩满足
的学生中任取3人,设
表示这3人中成绩满足
的人数,求
的分布列和数学期望;
(Ⅲ)根据以往培训数据,规定当
时培训有效.请根据图中数据,判断此次中学生冰雪培训活动是否有效,并说明理由.



(Ⅰ)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率;
(Ⅱ)从图中考核成绩满足




(Ⅲ)根据以往培训数据,规定当

2018年11月5日上午,首届中国国际进口博览会拉开大幕,这是中国也是世界上首次以进口为主题的国家级博览会.本次博览会包括企业产品展、国家贸易投资展.其中企业产品展分为7个展区,每个展区统计了备受关注百分比,如下表:
备受关注百分比指:一个展区中受到所有相关人士关注(简称备受关注)的企业数与该展区的企业数的比值.
(Ⅰ)从企业产品展7个展区的企业中随机选取1家,求这家企业是选自“智能及高端装备”展区备受关注的企业的概率;
(Ⅱ)从“消费电子及家电”展区备受关注的企业和“医疗器械及医药保健”展区备受关注的企业中,任选2家接受记者采访.
(i)记
为这2家企业中来自于“消费电子及家电”展区的企业数,求随机变量
的分布列;
(ii)假设表格中7个展区的备受关注百分比均提升10%.记
为这2家企业中来自于“消费电子及家电”展区的企业数.试比较随机变量
的均值
和
的大小.(只需写出结论)
展区类型 | 智能及 高端装备 | 消费电 子及家电 | 汽车 | 服装服饰及日用消费品 | 食品及农产品 | 医疗器械及医 药保健 | 服务 贸易 |
展区的企业数(家) | 400 | 60 | 70 | 650 | 1670 | 300 | 450 |
备受关注百分比 | 25% | 20% | 10% | 23% | 18% | 8% | 24% |
备受关注百分比指:一个展区中受到所有相关人士关注(简称备受关注)的企业数与该展区的企业数的比值.
(Ⅰ)从企业产品展7个展区的企业中随机选取1家,求这家企业是选自“智能及高端装备”展区备受关注的企业的概率;
(Ⅱ)从“消费电子及家电”展区备受关注的企业和“医疗器械及医药保健”展区备受关注的企业中,任选2家接受记者采访.
(i)记


(ii)假设表格中7个展区的备受关注百分比均提升10%.记



