- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- + 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
超级细菌是一种耐药性细菌,产生超级细菌的主要原因是用于抵抗细菌侵蚀的药物越来越多,但是由于滥用抗生素的现象不断的发生,很多致病菌也对相应的抗生素产生了耐药性,更可怕的是,抗生素药物对它起不到什么作用,病人会因为感染而引起可怕的炎症,高烧,痉挛,昏迷,甚至死亡.
某药物研究所为筛查某种超级细菌,需要检验血液是否为阳性,现有
份血液样本,每个样本取到的可能性相等,有以下两种检验方式:(1)逐份检验,则需要检验
次;(2)混合检验,将其中
(
且
)份血液样本分别取样混合在一起检验,若检验结果为阴性,则这
份的血液全为阴性,因而这
份血液样本只要检验一次就够了;如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为
次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为
现取其中
(
且
)份血液样本,记采用逐份检验方式,样本需要检验的总次数为
,采用混合检验方式,样本需要检验的总次数为
(1)运用概率统计的知识,若
,试求关于
的函数关系式
;
(2)若
与抗生素计量
相关,其中
是不同的正实数,满足
,对任意的
,都有
(i)证明:
为等比数列;
(ii)当
时,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求
的最大值.
参考数据:
,
,
,
,
,
某药物研究所为筛查某种超级细菌,需要检验血液是否为阳性,现有









现取其中





(1)运用概率统计的知识,若



(2)若






(i)证明:

(ii)当


参考数据:





某运动员射击一次所得环数
的分布列如下:
现进行两次射击,且两次射击互不影响,以该运动员两次射击中最高环数作为他的成绩,记为
.
(1)求该运动员两次命中的环数相同的概率;
(2)求
的分布列和数学期望
.

![]() | 8 | 9 | 10 |
![]() | 0.4 | 0.4 | 0.2 |
现进行两次射击,且两次射击互不影响,以该运动员两次射击中最高环数作为他的成绩,记为

(1)求该运动员两次命中的环数相同的概率;
(2)求


2018年国际乒联总决赛在韩国仁川举行,比赛时间为12月13﹣12月16日,在男子单打项目,中国队准备选派4人参加.已知国家一线队共6名队员,二线队共4名队员.
(1)求恰好有3名国家一线队队员参加比赛的概率;
(2)设随机变量X表示参加比赛的国家二线队队员的人数,求X的分布列;
(3)男子单打决赛是林高远(中国)对阵张本智和(日本),比赛采用七局四胜制,已知在每局比赛中,林高远获胜的概率为
,张本智和获胜的概率为
,前两局比赛双方各胜一局,且各局比赛的结果相互独立,求林高远获得男子单打冠军的概率.
(1)求恰好有3名国家一线队队员参加比赛的概率;
(2)设随机变量X表示参加比赛的国家二线队队员的人数,求X的分布列;
(3)男子单打决赛是林高远(中国)对阵张本智和(日本),比赛采用七局四胜制,已知在每局比赛中,林高远获胜的概率为


一商家诚邀甲、乙两名围棋高手进行一场网络国棋比赛,每比赛一局商家要向每名棋手支付2000元对局费,同时商家每局从转让网络转播权及广告宣传中获利12100元,从两名棋手以往比赛中得知,甲每局获胜的概率为
,乙每局获胜的概率为
,两名棋手约定:最多下五局,先连胜两局者获胜,比赛结束,比赛结束后,商家为获胜者颁发5000元的奖金,若没有决出获胜者则各颁发2500元.
(1)求下完五局且甲获胜的概率是多少;
(2)求商家从这场网络棋赛中获得的收益的数学期望是多少.


(1)求下完五局且甲获胜的概率是多少;
(2)求商家从这场网络棋赛中获得的收益的数学期望是多少.
某工厂过去在生产过程中将污水直接排放到河流中对沿河环境造成了一定的污染,根据环保部门对该厂过去10年的监测数据,统计出了其每年污水排放量
(单位:吨)的频率分布表:
将污水排放量落入各组的频率作为概率,并假设每年该厂污水排放量相互独立.
(1)若不加以治理,根据上表中的数据,计算未来3年中至少有2年污水排放量不小于200吨的概率;
(2)根据环保部门的评估,该厂当年污水排放量
时,对沿河环境及经济造成的损失为5万元;当年污水排放量
时,对沿河环境及经济造成的损失为10万元;当年污水排放量
时,对沿河环境及经济造成的损失为20万元;当年污水排放量
时,对沿河环境及经济造成的损失为50万元.为了保护环境,减少损失,该厂现有两种应对方案:
方案1:若该厂不采取治污措施,则需全部赔偿对沿河环境及经济造成的损失;
方案2:若该厂采购治污设备对所有产生的污水净化达标后再排放,则不需赔偿,采购设备的费用为10万元,每年设备维护等费用为15万元,该设备使用10年需重新更换.在接下来的10年里,试比较上述2种方案哪种能为该厂节约资金,并说明理由.

污水排放量![]() | ![]() | ![]() | ![]() | ![]() |
频率 | 0.1 | 0.3 | 0.4 | 0.2 |
将污水排放量落入各组的频率作为概率,并假设每年该厂污水排放量相互独立.
(1)若不加以治理,根据上表中的数据,计算未来3年中至少有2年污水排放量不小于200吨的概率;
(2)根据环保部门的评估,该厂当年污水排放量




方案1:若该厂不采取治污措施,则需全部赔偿对沿河环境及经济造成的损失;
方案2:若该厂采购治污设备对所有产生的污水净化达标后再排放,则不需赔偿,采购设备的费用为10万元,每年设备维护等费用为15万元,该设备使用10年需重新更换.在接下来的10年里,试比较上述2种方案哪种能为该厂节约资金,并说明理由.
某大型企业生产的某批产品细分为
个等级,为了了解这批产品的等级分布情况,从仓库存放的
件产品中随机抽取
件进行检测、分类和统计,并依据以下规则对产品进行打分:
级或
级产品打
分;
级或
级产品打
分;
级、
级、
级或
级产品打
分;其余产品打
分.现在有如下检测统计表:
规定:打分不低于
分的为优良级.
(1)①试估计该企业库存的
件产品为优良级的概率;
②请估计该企业库存的
件产品的平均得分.
(2)从该企业库存的
件产品中随机抽取
件,请估计这
件产品的打分之和为
分的概率.















等级 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
频数 | 10 | 90 | 100 | 200 | 200 | 100 | 100 | 100 | 70 | 30 |
规定:打分不低于

(1)①试估计该企业库存的

②请估计该企业库存的

(2)从该企业库存的



