- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.
(1)求投到该杂志的1篇稿件被录用的概率;
(2)记X表示投到该杂志的4篇稿件中被录用的篇数,求X的分布列.
(1)求投到该杂志的1篇稿件被录用的概率;
(2)记X表示投到该杂志的4篇稿件中被录用的篇数,求X的分布列.
从装有除颜色外没有区别的3个黄球、3个红球、3个蓝球的袋中摸3个球,设摸出的3个球的颜色种数为随机变量X,则P(X=2)=( )
A.![]() | B.![]() | C.![]() | D.![]() |
甲、乙、丙、丁4名同学被随机地分到
三个社区参加社会实践,要求每个社区至少有一名同学.
(1)求甲、乙两人都被分到
社区的概率;
(2)求甲、乙两人不在同一个社区的概率;
(3)设随机变量
为四名同学中到
社区的人数,求
的分布列和
的值.

(1)求甲、乙两人都被分到

(2)求甲、乙两人不在同一个社区的概率;
(3)设随机变量




为了解甲、乙两种产品的质量,从中分别随机抽取了10件样品,测量产品中某种元素的含量(单位:毫克),如图所示是测量数据的茎叶图.规定:当产品中的此中元素的含量不小于18毫克时,该产品为优等品.

(1)试用样品数据估计甲、乙两种产品的优等品率;
(2)从乙产品抽取的10件样品中随机抽取3件,求抽到的3件样品中优等品数
的分布列及其数学期望
;
(3)从甲产品抽取的10件样品中有放回地随机抽取3件,也从乙产品抽取的10件样品中有放回地随机抽取3件;抽到的优等品中,记“甲产品恰比乙产品多2件”为事件
,求事件
的概率.

(1)试用样品数据估计甲、乙两种产品的优等品率;
(2)从乙产品抽取的10件样品中随机抽取3件,求抽到的3件样品中优等品数


(3)从甲产品抽取的10件样品中有放回地随机抽取3件,也从乙产品抽取的10件样品中有放回地随机抽取3件;抽到的优等品中,记“甲产品恰比乙产品多2件”为事件


教育学家分析发现加强语文乐队理解训练与提高数学应用题得分率有关,某校兴趣小组为了验证这个结论,从该校选择甲乙两个同轨班级进行试验,其中甲班加强阅读理解训练,乙班常规教学无额外训练,一段时间后进行数学应用题测试,统计数据情况如下面的
列联表(单位:人)
(1)经过多次测试后,小明正确解答一道数学应用题所用的时
间在5—7分钟,小刚正确解得一道数学应用题所用的时间在6—8
分钟,现小明.小刚同时独立解答同一道数学应用题,求小刚比
小明先正确解答完的概率;
(2)现从乙班成绩优秀的8名同学中任意抽取两人,并对他们的答题情况进行全程研究,记


(1)经过多次测试后,小明正确解答一道数学应用题所用的时
间在5—7分钟,小刚正确解得一道数学应用题所用的时间在6—8
分钟,现小明.小刚同时独立解答同一道数学应用题,求小刚比
小明先正确解答完的概率;
(2)现从乙班成绩优秀的8名同学中任意抽取两人,并对他们的答题情况进行全程研究,记
A.B两人中被抽到的人数为![]() ![]() ![]() |

已知一个口袋中有3个白球,2个黑球,这些球除颜色外全部相同,现将口袋中的球随机地逐个取出,并放入如图所示的编号为
的抽屉内,其中第
次取出的球放入编号为
的抽屉.
(1)试求编号为2的抽屉内放的是黑球的概率
;
(2)随机变量
表示最后一个取出的黑球所在抽屉编号的倒数,求分布列.



(1)试求编号为2的抽屉内放的是黑球的概率

(2)随机变量

流行性感冒多由病毒引起,据调查,空气月平均相对湿度过大或过小时,都有利于一些病毒繁殖和传播,科学测定,当空气月平均相对湿度大于65010或小于
时,有利于病毒繁殖和传播.下表记录了某年甲、乙两个城市12个月的空气月平均相对湿度.
(I)从上表12个月中,随机取出1个月,求该月甲地空气月平均相对湿度有利于病毒繁殖和传播的概率;
(Ⅱ)从上表第一季度和第二季度的6个月中随机取出2个月,记这2个月中甲、乙两地空气月平均相对湿度都有利于病毒繁殖和传播的月份的个数为
,求
的分布列;
(Ⅲ)若
,设乙地上表12个月的空气月平均相对湿度的中位数为
,求
的最大值和最小值.(只需写出结论)

| 第一季度 | 第二季度 | 第三季度 | 第四季度 | ||||||||
1月 | 2月 | 3月 | 4月 | 5月 | 6月 | 7月 | 8月 | 9月 | 10月 | 11月 | 12月 | |
甲地 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
乙地 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(I)从上表12个月中,随机取出1个月,求该月甲地空气月平均相对湿度有利于病毒繁殖和传播的概率;
(Ⅱ)从上表第一季度和第二季度的6个月中随机取出2个月,记这2个月中甲、乙两地空气月平均相对湿度都有利于病毒繁殖和传播的月份的个数为


(Ⅲ)若



学校文娱队的每位队员唱歌、跳舞至少会一项,已知会唱歌的有2人,会跳舞的有5人,现从中选2人.设
为选出的人中既会唱歌又会跳舞的人数,且
.
(1)求文娱队的队员人数;
(2)写出
的概率分布列并计算


(1)求文娱队的队员人数;
(2)写出


某中超足球队的后卫线上一共有7名球员,其中3人只能打中后卫,2人只能打边后卫,2人既能打中后卫又能打边后卫,主教练决定选派4名后卫上场比赛,假设可以随机选派球员.
(1)在选派的4人中至少有2人能打边后卫的概率;
(2)在选派的4人中既能打中后卫又能打边后卫的人数
的分布列与期望.
(1)在选派的4人中至少有2人能打边后卫的概率;
(2)在选派的4人中既能打中后卫又能打边后卫的人数
