- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 整除和余数问题
- 近似计算问题
- 证明组合恒等式
- + 二项式定理与数列求和
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对于n∈N*,将n表示为n=a0×2k+a1×2k﹣1+a2×2k﹣2+…+ak﹣1×21+ak×20,i=0时,ai=1,当1≤i≤k时,ai为0或1,记I(n)为上述表示中ai为0的个数;例如4=1×22+0×21+0×20,11=1×23+0×22+1×21+1×20,故I(4)=2,I(11)=1;则2I(1)+2I(2)+…+2I(254)+2I(255)= .
等差数列
和等比数列
中,
,
,
是
前
项和.
(1)若
,求实数
的值;
(2)是否存在正整数
,使得数列
的所有项都在数列
中?若存在,求出所有的
,若不存在,说明理由;
(3)是否存在正实数
,使得数列
中至少有三项在数列
中,但
中的项不都在数列
中?若存在,求出一个可能的
的值,若不存在,请说明理由.







(1)若


(2)是否存在正整数




(3)是否存在正实数






已知二进制和十进制可以相互转化,例如
,则十进制数89转化为二进制数为
.将
对应的二进制数中0的个数,记为
(例如:
,
,
,则
,
,
),记
,则
__________.












我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第
行的所有数字之和为
,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,…,则此数列的前15项和为( )




A.110 | B.114 | C.124 | D.125 |
设数列
的前n项和为
,且满足
,
,用
表示不超过x的最大整数,设
,数列
的前2n项和为
,则使
成立的最小正整数n是()









A.5 | B.6 | C.7 | D.8 |