- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 整除和余数问题
- 近似计算问题
- 证明组合恒等式
- + 二项式定理与数列求和
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对于数列
,称
(其中
)为数列
的前k项“波动均值”.若对任意的
,都有
,则称数列
为“趋稳数列”.
(1)若数列1,
,2为“趋稳数列”,求
的取值范围;
(2)若各项均为正数的等比数列
的公比
,求证:
是“趋稳数列”;
(3)已知数列
的首项为1,各项均为整数,前
项的和为
. 且对任意
,都有
, 试计算:
(
).







(1)若数列1,


(2)若各项均为正数的等比数列



(3)已知数列







已知数列
的前
项和为
,数列
是首项为0,公差为
的等差数列.
(1)求数列
的通项公式;
(2)设
,对任意的正整数
,将集合
中的三个元素排成一个递增的等差数列,其公差为
,求证:数列
为等比数列;
(3)对(2)中的
,求集合
的元素个数.





(1)求数列

(2)设





(3)对(2)中的


已知数列
为首项为
,公比为
的等比数列,
为其前
项和.
(1)计算
、
的值;
(2)归纳对一切正整数
成立的恒等式,并给予证明;
(3)对于公比,计算
的值.





(1)计算


(2)归纳对一切正整数

(3)对于公比,计算

设
是给定的正整数,有序数组
同时满足下列条件:
①
,
; ②对任意的
,都有
.
(1)记
为满足“对任意的
,都有
”的有序数组
的个数,求
;
(2)记
为满足“存在
,使得
”的有序数组
的个数,求
.


①




(1)记





(2)记




