某印刷厂为了研究印刷单册书籍的成本(单位:元)与印刷册数(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:
印刷册数(千册)
2
3
4
5
8
单册成本(元)
3.2
2.4
2
1.9
1.7
 
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:,方程乙:.
(1)为了评价两种模型的拟合效果,完成以下任务.
①完成下表(计算结果精确到0.1);
印刷册数(千册)
2
3
4
5
8
单册成本(元)
3.2
2.4
2
1.9
1.7
模型甲
估计值
 
2.4
2.1
 
1.6
残差
 
0
-0.1
 
0.1
模型乙
估计值
 
2.3
2
1.9
 
残差
 
0.1
0
0
 
 
②分别计算模型甲与模型乙的残差平方和,并通过比较的大小,判断哪个模型拟合效果更好.
(2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷.根据市场调查,新需求量为8千册(概率0.8)或10千册(概率0.2),若印刷厂以每册5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册能获得更多利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)
当前题号:1 | 题型:解答题 | 难度:0.99
某印刷厂为了研究印刷单册书籍的成本y(单位:元)与印刷册数x(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:

 根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到了两个回归方程,甲: 
为了评价两种模型的拟合效果,完成以下任务:
(1)(ⅰ)完成下表(计算结果精确到0.1):

(ⅱ)分别计算模型甲与模型乙的残差平方和,并通过比较,的大小,判断哪个模型拟合效果更好.
(2)该书上市后,受到广大读者的热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷,根据市场调查,新需求量为8千册(概率为0.8)或10千册(概率为0.2),若印刷厂以没测5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册恒获得更多的利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)
当前题号:2 | 题型:解答题 | 难度:0.99
若有一组数据的总偏差平方和为,相关指数为,则其残差平方和为______
当前题号:3 | 题型:填空题 | 难度:0.99
给出下列命题:
①线性相关系数越大,两个变量的线性相关越强;反之,线性相关性越弱;
②由变量的数据得到其回归直线方程:,则一定经过
③从越苏传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
④在回归分析模型中,残差平方和越小,说明模型的拟合效果越好;
⑤在回归直线方程中,当解释变量每增加一个单位时,预报变量增加0.1个单位,其中真命题的序号是  
当前题号:4 | 题型:填空题 | 难度:0.99
已知xy之间的一组数据如表:

(1)分别从集合A={1,3,6,7,8},B={1,2,3,4,5}中各取一个数xy,求x+y≥10的概率;
(2)对于表中数据,甲、乙两同学给出的拟合直线分别为,试根据残差平方和:的大小,判断哪条直线拟合程度更好.
当前题号:5 | 题型:解答题 | 难度:0.99
已知回归方程,则该方程在样本 处的残差为( )
A.B.C.D.
当前题号:6 | 题型:单选题 | 难度:0.99
已知方程是根据女大学生的身高预报她的体重的回归方程,其中x的单位是cm,的单位是kg,那么针对某个体(160,53)的残差是________.
当前题号:7 | 题型:填空题 | 难度:0.99
某印刷厂为了研究单册书籍的成本(单位:元)与印刷册数(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:

根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:,方程乙:.
(1)为了评价两种模型的拟合效果,完成以下任务.
①完成下表(计算结果精确到0.1);

②分别计算模型甲与模型乙的残差平方和,并通过比较的大小,判断哪个模型拟合效果更好.
(2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷,根据市场调查,新需求量为10千册,若印刷厂以每册5元的价格将书籍出售给订货商,求印刷厂二次印刷10千册获得的利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本).
当前题号:8 | 题型:解答题 | 难度:0.99
若有一组数据的总偏差平方和为100,相关指数=0.75,则其残差平方和为_______。
当前题号:9 | 题型:填空题 | 难度:0.99
共享单车是指企业在校园、地铁站点、公共站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是一种分时租赁模式,是共享经济的一种新形态.某共享单车企业在城市就“一天中一辆单车的平均成本与租用单车数量之间的关系”进行了调查,并将相关数据统计如下表:
租用单车数量(千辆)
2
3
4
5
8
每天一辆车平均成本(元)
3.2
2.4
2
1.9
1.5
 
根据以上数据,研究人员设计了两种不同的回归分析模型,得到两个拟合函数:
模型甲:,模型乙:.
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1元)(备注:称为相应于点的残差);
租用单车数量(千辆)
2
3
4
5
8
每天一辆车平均成本(元)
3.2
2.4
2
1.9
1.5
模型甲
估计值
 
2.4
2
1.8
1.4
残差
 
0
0
0.1
0.1
模型乙
估计值
 
2.3
2
1.9
 
残差
 
0.1
0
0
 
 
②分别计算模型甲与模型乙的残差平方和,并通过比较的大小,判断哪个模型拟合效果更好.
(2)这家企业在城市投放共享单车后,受到广大市民的热烈欢迎并供不应求,于是该企业决定增加单车投放量.根据市场调查,市场投放量达到1万辆时,平均每辆单车一天能收入7.2元;市场投放量达到1.2万辆时,平均每辆单车一天能收入6.8元.若按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,问该企业投放量选择1万辆还是1.2万辆能获得更多利润?请说明理由.(利润=收入-成本)
当前题号:10 | 题型:解答题 | 难度:0.99