耐盐碱水稻俗称“海水稻”,是一种可以长在滩涂和盐碱地的水稻.海水稻的灌溉是将海水稀释后进行灌溉.某试验基地为了研究海水浓度(‰)对亩产量(吨)的影响,通过在试验田的种植实验,测得了某种海水稻的亩产量与海水浓度的数据如表.绘制散点图发现,可用线性回归模型拟合亩产量与海水浓度之间的相关关系,用最小二乘法计算得之间的线性回归方程为

(1)求,并估计当浇灌海水浓度为8‰时该品种的亩产量;
(2)(i)完成上述残差表:
(ii)统计学中常用相关指数来刻画回归效果,越大,模型拟合效果越好,如假设,就说明预报变量的差异有是由解释变量引起的.请计算相关指数(精确到0.01),并指出亩产量的变化多大程度上是由浇灌海水浓度引起的?
(附:残差公式,相关指数)
当前题号:1 | 题型:解答题 | 难度:0.99
某山区为研究居民家庭月人均生活费支出和月人均收入的相关关系,随机抽取10户进行调查,其结果如下:

试预测月人均收入为1100元和月人均收入为1200元的两个家庭的月人均生活费,并进行残差分析.
当前题号:2 | 题型:解答题 | 难度:0.99
在一段时间内,某种商品的价格(元)和需求量(件)之间的一组数据如下表所示:

(1)求出关于的线性回归方程;
(2)请用和残差图说明回归方程拟合效果的好坏.
参考数据:回归方程中,
参考数据:
当前题号:3 | 题型:解答题 | 难度:0.99
下列说法:
①从匀速传递的产品生产流水线上,质检员第10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样
②某地气象局预报:5月9日本地降水概率为90%,结果这天没下雨,这表明天气预报并不科学
③在回归分析模型中,残差平方和越小,说明模型的拟合效果越好
④在回归直线方程中,当解释变量x每增加一个单位时,预报变量平均增加0.1个单位
其中正确的是 (填上你认为正确的序号)
当前题号:4 | 题型:填空题 | 难度:0.99
给出下列命题:
①线性相关系数越大,两个变量的线性相关性越强;反之,线性相关性越弱;
②由变量的数据得到其回归直线方程,则一定经过点
③从匀速传递的产品生产流水线上,质检员每分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
④在回归分析模型中,残差平方和越小,说明模型的拟合效果越好;
⑤在回归直线方程中,当解释变量每增加一个单位时,预报变量增加个单位,其中真命题的序号是  
当前题号:5 | 题型:填空题 | 难度:0.99
某工厂为研究某种产品产量(吨)与所需某种原材料(吨)的相关性,在生产过程中收集4组对应数据()如下表所示:(残差=真实值-预测值)

3
4
5
6

2.5
3
4

 
根据表中数据,得出关于的线性回归方程为:.据此计算出在样本处的残差为-0.15,则表中的值为__________.
当前题号:6 | 题型:填空题 | 难度:0.99
下列说法错误的是 (   )
A.线性回归直线至少经过其样本数据点中的一个点
B.在统计学中,独立性检验是检验两个分类变量是否有关系的一种统计方法
C.残差平方和越小的模型,模型拟合的效果越好
D.在残差图中,残差分布的带状区域的宽度越狭窄,其模拟的效果越好
当前题号:7 | 题型:单选题 | 难度:0.99
某共享单车企业在城市就“一天中一辆单车的平均成本与租用单车数量之间的关系”进行了调查,并将相关数据统计如下表:

根据以上数据,研究人员设计了两种不同的回归分析模型,得到两个拟合函数:
模型甲:,模型乙:.
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1元)(备注:称为相应于点的残差);

②分别计算模型甲与模型乙的残差平方和,并通过比较的大小,判断哪个模型拟合效果更好.
(2)这家企业在4城市投放共享单车后,受到广大市民的热烈欢迎并供不应求,于是该企业决定增加单车投放量.根据市场调查,市场投放量达到1万辆时,平均每辆单车一天能收入7.2元;市场投放量达到1.2万辆时,平均每辆单车一天能收入6.8元.若按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,问该企业投放量选择1万辆还是1.2万辆能获得更多利润?请说明理由.(利润收入成本)
当前题号:8 | 题型:解答题 | 难度:0.99
红铃虫是棉花的主要害虫之一,也侵害木棉、锦葵等植物.为了防治虫害,从根源上抑制害虫数量.现研究红铃虫的产卵数和温度的关系,收集到7组温度和产卵数的观测数据于表I中.根据绘制的散点图决定从回归模型①与回归模型②中选择一个来进行拟合.

表I

温度

20

22

25

27

29

31

35

产卵数

7

11

21

24

65

114

325

 

(1)请借助表II中的数据,求出回归模型①的方程:

表II(注:表中

189

567

25.27

162

78106

11.06

3040

41.86

825.09

 

(2)类似的,可以得到回归模型②的方程为.试求两种模型下温度为时的残差;
(3)若求得回归模型①的相关指数,回归模型②的相关指数,请结合②说明哪个模型的拟合效果更好.
参考数据:
附:回归方程相关指数
当前题号:9 | 题型:解答题 | 难度:0.99