- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- + 统计案例
- 回归分析
- 独立性检验
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在一项调查中有两个变量
和
,下图是由这两个变量近8年来的取值数据得到的散点图,那么适宜作为
关于
的回归方程的函数类型是( )






A.![]() | B.![]() |
C.![]() | D.![]() ![]() |
某企业为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取100件产品作为样本称出它们的质量(单位:毫克),质量值落在
的产品为合格品,否则为不合格品.如表是甲流水线样本频数分布表,如图是乙流水线样本的频率分布直方图.
(Ⅰ)根据乙流水线样本的频率分布直方图,求乙流水线样本质量的中位数(结果保留整数);
(Ⅱ)从甲流水线样本中质量在
的产品中任取2件产品,求两件产品中恰有一件合格品的概率;
(Ⅲ)由以上统计数据完成下面2×2列联表,能否在犯错误的概率不超过0.15的前提下认为产品的包装合格与两条自动包装流水线的选择有关?
下面临界值表仅供参考:
参考公式:
,其中n=a+b+c+d.

产品质量/毫克 | 频数 |
(165,175] | 3 |
(175,185] | 2 |
(185,195] | 21 |
(195,205] | 36 |
(205,215] | 24 |
(215,225] | 9 |
(225,235] | 5 |
(Ⅰ)根据乙流水线样本的频率分布直方图,求乙流水线样本质量的中位数(结果保留整数);
(Ⅱ)从甲流水线样本中质量在

| 甲流水线 | 乙流水线 | 总计 |
合格品 | | | |
不合格品 | | | |
总计 | | | |
(Ⅲ)由以上统计数据完成下面2×2列联表,能否在犯错误的概率不超过0.15的前提下认为产品的包装合格与两条自动包装流水线的选择有关?
下面临界值表仅供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:


如图所示,给出了样本容量均为7的A、B两组样本数据的散点图,已知A组样本数据的相关系数为r1,B组数据的相关系数为r2,则( )


A.r1=r2 | B.r1<r2 | C.r1>r2 | D.无法判定 |
如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分,为了解网络外卖在A市的普及情况,A市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到如表:(单位:人)
(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为A市使用网络外卖的情况与性别有关?
(2)将频率视为概率,从A市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为X,求X的数学期望和方差.
参考公式:
,其中
.
参考数据:
| 经常使用网络外卖 | 偶尔或不用网络外卖 | 合计 |
男性 | 50 | 50 | 100 |
女性 | 60 | 40 | 100 |
合计 | 110 | 90 | 200 |
(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为A市使用网络外卖的情况与性别有关?
(2)将频率视为概率,从A市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为X,求X的数学期望和方差.
参考公式:


参考数据:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
为了了解甲、乙两校学生自主招生通过情况,从甲校抽取60人,从乙校抽取50人进行分析.
(1)根据题目条件完成上面2×2列联表,并据此判断是否有99%的把握认为自主招生通过情况与学生所在学校有关;
(2)现已知甲校A,B,C三人在某大学自主招生中通过的概率分别为
,用随机变量X表示A,B,C三人在该大学自主招生中通过的人数,求X的分布列及期望E(X).
| 通过人数 | 末通过人数 | 总计 |
甲校 | | | |
乙校 | 30 | | |
总计 | | 60 | |
(1)根据题目条件完成上面2×2列联表,并据此判断是否有99%的把握认为自主招生通过情况与学生所在学校有关;
(2)现已知甲校A,B,C三人在某大学自主招生中通过的概率分别为

参考公式:.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |



(1)请填写2


| 使用工艺 | 不使用工艺 | 合格 |
合格 | | | |
不合格 | | | |
合计 | | | 50 |
(2)在得到单晶的晶圆后,接下来的生产制作还前对单晶的晶圆依次进行金属溅镀,涂布光阻,蚀刻技术,光阻去除这四个环节的精密操作,进而得到多晶的晶圆,生产出来的多晶的晶圆经过严格的质检,确定合格后才能进入下一个流程,如果生产出来的多晶的晶圆在质检中不合格,那么必须依次对前四个环节进行技术检测并对所有的出错环节进行修复才能成为合格品.在实验的初期,由于技术的不成熟,生产制作的多晶的晶圆很难达到理想状态,研究人员根据以往的数据与经验得知在实验生产多晶的晶圆的过程中,前三个环节每个环节生产正常的概率为


参考公式:

参考数据:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
为了研究广大市民对共享单车的使用情况,某公司在我市随机抽取了100名用户进行调查,得到如下数据:
认为每周使用超过3次的用户为“喜欢骑共享单车”.
(1)分别估算男、女“喜欢骑共享单车”的概率;
(2)请完成下面的2×2列联表,并判断能否有95%把握,认为是否“喜欢骑共享单车”与性别有关.
附表及公式:
,其中
.
每周使用次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合计 | 10 | 8 | 7 | 11 | 14 | 50 |
认为每周使用超过3次的用户为“喜欢骑共享单车”.
(1)分别估算男、女“喜欢骑共享单车”的概率;
(2)请完成下面的2×2列联表,并判断能否有95%把握,认为是否“喜欢骑共享单车”与性别有关.
| 不喜欢骑共享单车 | 喜欢骑共享单车 | 合计 |
男 | | | |
女 | | | |
合计 | | | |
附表及公式:


![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
某地为了调查市民对“一带一路”倡议的了解程度,随机选取了
名年龄在
岁至
岁的市民进行问卷调查,并通过问卷的分数把市民划分为了解“一带一路”倡议与不了解“一带一路”倡议两类.得到下表:
(I)完成下面的
列联表,并判断是否有
的把握认为以
岁为分界点对“一带一路”倡议的了解有差异(结果精确到
);
(Ⅱ)以频率估计概率,若在该地选出
名市民(年龄在
岁至
岁),记
名市民中了解“一带一路”倡议的人数为
,求随机变量
的分布列,数学期望和方差.
附:
,其中
.



年龄 | ![]() | ![]() | ![]() | ![]() |
调查人数/名 | ![]() | ![]() | ![]() | ![]() |
了解“一带一路”倡议/名 | ![]() | ![]() | ![]() | ![]() |
(I)完成下面的




| 年龄低于![]() | 年龄不低于![]() | 合计 |
了解 | | | |
不了解 | | | |
合计 | | | |
(Ⅱ)以频率估计概率,若在该地选出






附:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |


若对甲、乙、丙3组不同的数据作线性相关性检验,得到这3组数据的线性相关系数依次为0.83,0.72,-0.90,则线性相关程度最强的一组是_______ .(填甲、乙、丙中的一个)
随着我国互联网信息技术的发展,网络购物已经成为许多人消费的一种重要方式,某市为了了解本市市民的网络购物情况,特委托一家网络公司进行了网络问卷调查,并从参与调查的10000名网民中随机抽取了200人进行抽样分析,得到了下表所示数据:
(1)依据上述数据,能否在犯错误的概率不超过
的前提下认为该市市民进行网络购物的情况与性别有关?
(2)现从所抽取的女性网民中利用分层抽样的方法再抽取
人,从这
人中随机选出
人赠送网络优惠券,求选出的
人中至少有两人是经常进行网络购物的概率;
(3)将频率视为概率,从该市所有的参与调查的网民中随机抽取
人赠送礼物,记经常进行网络购物的人数为
,求
的期望和方差.
附:
,其中
| 经常进行网络购物 | 偶尔或从不进行网络购物 | 合计 |
男性 | 50 | 50 | 100 |
女性 | 60 | 40 | 100 |
合计 | 110 | 90 | 200 |
(1)依据上述数据,能否在犯错误的概率不超过

(2)现从所抽取的女性网民中利用分层抽样的方法再抽取




(3)将频率视为概率,从该市所有的参与调查的网民中随机抽取



附:


![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |