刷题首页
题库
高中数学
题干
某兴趣小组欲研究某地区昼夜温差大小与患感冒就诊人数之间的关系,他们分别到气象局与某医院抄录了1到5月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期
1月10日
2月10日
3月10日
4月10日
5月10日
昼夜温差
8
10
13
12
9
就诊人数
(个)
18
25
28
26
17
该兴趣小组确定的研究方案是:先从这5组数据中选取一组,用剩下的4组数据求线性回归方程,再用选取的一组数据进行检验.
(1)若选取的是1月的一组数据,请根据2至5月份的数据.求出
关于
的线性回归方程
.
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2,则认为得到的线性回归方程是理想的,试判断该小组所得的线性回归方程是否理想?如果不理想,请说明理由,如果理想,试预测昼夜温差为
时,因感冒而就诊的人数约为多少?
参考公式:
,
.
上一题
下一题
0.99难度 解答题 更新时间:2019-01-07 07:09:52
答案(点此获取答案解析)
同类题1
某班的健康调查小组从所在学校共选取15名男同学,其年龄、身高和体重数据如下表所示(本题中身高单位:
,体重单位:
).
年龄
(身高,体重)
年龄
(身高,体重)
15
,
,
18
,
,
16
,
,
19
,
,
17
,
,
(1)如果某同学“身高-体重
”,则认为该同学超重,从上述15名同学中任选两名同学,其中超重的同学人数为
,求
的分布列和数学期望;
(2)根据表中数据,设计两种方案预测学生身高.方案①:建立平均体重与年龄的线性回归模型,表中各年龄的体重按三名同学的平均体重计算,数据整理如下表.
1
2
3
4
5
年龄
15
16
17
18
19
平均体重
59
63.3
64
70
69.7
方案②:建立平均体重与平均身高的线性回归模型,将所有数据按身高重新分成6组:
,
,
,
,
,
,并将每组的平均身高依次折算为155,160,165,170,175,180,各组的体重按平均体重计算,数据整理如下表.
1
2
3
4
5
6
平均身高
155
160
165
170
175
180
平均体重
48
57
63
68
74
82
(i)用方案①预测20岁男同学的平均体重和用方案②预测身高
的男同学的平均体重,你认为哪个更合理?请给出理由;
(ii)请根据方案②建立平均体重
与平均身高
的线性回归方程
(数据精确到0.01).
附:
,
.
,
,
,
.
同类题2
某地随着经济的发展,居民收入逐年增长,如表是该地一建设银行连续五年的储蓄存款(年底余额),如表1
年份
x
2011
2012
2013
2014
2015
储蓄存款
y
(千亿元)
5
6
7
8
10
为了研究计算的方便,工作人员将上表的数据进行了处理,
得到表2:
时间代号
t
1
2
3
4
5
z
0
1
2
3
5
(1)求
z
关于
t
的线性回归方程;
(2)通过(1)中的方程,求出
y
关于
x
的回归方程;
(3)用所求回归方程预测到2010年年底,该地储蓄存款额可达多少?
附:对于线性回归方程
,
其中
,
.
同类题3
据统计,某地区植被覆盖面积
公顷
与当地气温下降的度数
之间呈线性相关关系,对应数据如下:
公顷
20
40
60
80
3
4
4
5
请用最小二乘法求出
y
关于
x
的线性回归方程;
根据
中所求线性回归方程,如果植被覆盖面积为300公顷,那么下降的气温大约是多少
?
参考公式:线性回归方程
;其中
,
.
同类题4
为了研究黏虫孵化的平均温度
(单位:
)与孵化天数
之间的关系,某课外兴趣小组通过试验得到如下6组数据:
组号
1
2
3
4
5
6
平均温度
15.3
16.8
17.4
18
19.5
21
孵化天数
16.7
14.8
13.9
13.5
8.4
6.2
他们分别用两种模型①
,②
分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图:
经计算得
,
(1)根据残差图,比较模型①,②的拟合效果,应选择哪个模型?(给出判断即可,不必说明理由)
(2)残差绝对值大于1的数据被认为是异常数据,需要剔除,剔除后应用最小二乘法建立
关于
的线性回归方程.(精确到0.1)
,.
同类题5
某老小区建成时间较早,没有集中供暖,随着人们生活水平的日益提高热力公司决定在此小区加装暖气该小区的物业公司统计了近五年(截止2018年年底)小区居民有意向加装暖气的户数,得到如下数据
年份编号
x
1
2
3
4
5
年份
2014
2015
2016
2017
2018
加装户数
y
34
95
124
181
216
(Ⅰ)若有意向加装暖气的户数
y
与年份编号
x
满足线性相关关系求
y
与
x
的线性回归方程并预测截至2019年年底,该小区有多少户居民有意向加装暖气;
(Ⅱ)2018年年底郑州市民生工程决定对老旧小区加装暖气进行补贴,该小区分到120个名额物业公司决定在2019年度采用网络竞拍的方式分配名额,竞拍方案如下:①截至2018年年底已登记在册的居民拥有竞拍资格;②每户至多申请一个名额,由户主在竞拍网站上提出申请并给出每平方米的心理期望报价;③根据物价部门的规定,每平方米的初装价格不得超过300元;④申请阶段截止后,将所有申请居民的报价自高到低排列,排在前120位的业主以其报价成交;⑤若最后出现并列的报价,则认为申请时问在前的居民得到名额,为预测本次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的50位居民进行调查统计了他们的拟报竞价,得到如图所示的频率分布直方图:
(1)求所抽取的居民中拟报竞价不低于成本价180元的人数;
(2)如果所有符合条件的居民均参与竞拍,请你利用样本估计总体的思想预测至少需要报价多少元才能获得名额(结果取整数)
参考公式对于一组数据(
x
1
,
y
1
),(
x
2
,
y
2
),(
x
3
,
y
3
),…(
x
n
,
y
n
),其回归直线
的斜率和截距的最小二乘估计分别为,
相关知识点
计数原理与概率统计
统计
变量间的相关关系
最小二乘法
求回归直线方程