- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 解释回归直线方程的意义
- + 用回归直线方程对总体进行估计
- 根据回归方程求原数据中的值
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在“一带一路”的建设中,中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了几口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料下表:
(1)在散点图中
号旧井位置大致分布在一条直线附近,借助前5组数据求得回归线方程为
,求
,并估计
的预报值;
(2)现准备勘探新井
,若通过1、3、5、7号井计算出的
的值(
精确到0.01)相比于(1)中
的值之差(即:
)不超过10%,则使用位置最接近的已有旧井
,否则在新位置打井,请判断可否使用旧井?(参考公式和计算结果:
)
(3)设出油量与钻探深度的比值
不低于20的勘探井称为优质井,在原有井号
的井中任意勘探3口井,求恰好2口是优质井的概率.
井号I | 1 | 2 | 3 | 4 | 5 | 6 |
坐标![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
钻探深度![]() | 2 | 4 | 5 | 6 | 8 | 10 |
出油量![]() | 40 | 70 | 110 | 90 | 160 | 205 |
(1)在散点图中




(2)现准备勘探新井







(3)设出油量与钻探深度的比值


中石化集团通过与安哥拉国家石油公司合作,获得了安哥拉深海油田区块的开采权,集团在某些区块随机初步勘探了部分旧井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井.以节约勘探费用.勘探初期数据资料见下表:
(1)
号旧井位置线性分布,借助前5组数据求得回归直线方程为
,求
,并估计
的预报值;
(2)现准备勘探新井7
,若通过1、3、5、7号井计算出的
的值与(1)中
的值差不超过10%,则使用位置最接近的已有旧井6
,否则在新位置打开,请判断可否使用旧井?

(3)设井出油量与勘探深度的比值
不低于20的勘探并称为优质井,那么在原有的出油量不低于
的
井中任意勘察3口井,求恰有2口是优质井的概率.
井号![]() | 1 | 2 | 3 | 4 | 5 | 6 |
坐标![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
钻探深度![]() | 2 | 4 | 5 | 6 | 8 | 10 |
出油量![]() | 40 | 70 | 110 | 90 | 160 | 205 |
(1)




(2)现准备勘探新井7





(3)设井出油量与勘探深度的比值


井中任意勘察3口井,求恰有2口是优质井的概率.
(题文)某城市城镇化改革过程中最近五年居民生活用水量逐年上升,下表是2011年至2015年的统计数据:
(1)利用所给数据求年居民生活用水量与年份之间的回归直线方程
;
(2)根据改革方案,预计在2020年底城镇化改革结束,到时候居民的生活用水量将趋于稳定,预测该城市2023年的居民生活用水量.
最小二乘估计分别为:
,
.
年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
居民生活用水量(万吨) | 236 | 246 | 257 | 276 | 286 |
(1)利用所给数据求年居民生活用水量与年份之间的回归直线方程

(2)根据改革方案,预计在2020年底城镇化改革结束,到时候居民的生活用水量将趋于稳定,预测该城市2023年的居民生活用水量.
最小二乘估计分别为:


某校高二奥赛班
名学生的物理测评成绩(满分
分)分布直方图如下,已知分数在
的学生数有
人.

(1)求总人数
和分数在
分的人数
;
(2)现准备从分数在
的
名学生(女生占
)中选出
位分配给
老师进行指导,设随机变量
表示选出的
位学生中女生的人数,求
的分布列和数学期望
;
(3)为了分析某个学生的学习状态,对其下一阶段的学习提供指导性建议.对他前
次考试的数学成绩
(满分
分)、物理成绩
进行分析.该生
次考试的成绩如下表:

已知该生的物理成绩
与数学成绩
是线性相关的,若该生的数学成绩达到
分,请你估计他的物理成绩大约是多少?
附:对于一组数据
,
,
,
,其回归线
的斜率和截距的最小二乘估计分别为:
,
.





(1)求总人数



(2)现准备从分数在









(3)为了分析某个学生的学习状态,对其下一阶段的学习提供指导性建议.对他前






已知该生的物理成绩



附:对于一组数据







某单位为了了解办公楼用电量
(度)与气温
(℃)之间的关系,随机统计了四个工作日的用电量与当天平均气温,并制作了对照表:
由表中数据得到线性回归方程
,当气温为
时,预测用电量约为( )


气温(℃) | 18 | 13 | 10 | -1 |
用电量(度) | 24 | 34 | 38 | 64 |
由表中数据得到线性回归方程


A.![]() | B.![]() | C.![]() | D.![]() |
菜农定期使用低害杀虫农药对蔬菜进行喷洒, 以防止害虫的危害, 但采集上市时蔬菜仍存有少量的残留农药, 食用时需要用清水清洗干净, 下表是用清水
(单位:千克) 清洗该蔬菜
千克后, 蔬菜上残留的农药
(单位:微克) 的统计表:
(1)在下面的坐标系中, 描出散点图, 并判断变量
与
的相关性;
(2)若用解析式
作为蔬菜农药残量
与用水量
的回归方程, 令
,计算平均值
与
,完成以下表格(填在答题卡中) ,求出
与
的回归方程.(
精确到
)

(3)对于某种残留在蔬菜上的农药,当它的残留量低于
微克时对人体无害, 为了放心食用该蔬菜, 请
估计需要用多少千克的清水清洗一千克蔬菜?(精确到
,参考数据
)
(附:线性回归方程
中系数计算公式分别为;
,
)



![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)在下面的坐标系中, 描出散点图, 并判断变量


(2)若用解析式











![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | | | | | |
![]() | | | | | |
(3)对于某种残留在蔬菜上的农药,当它的残留量低于

估计需要用多少千克的清水清洗一千克蔬菜?(精确到


(附:线性回归方程



中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分儿口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探. 由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见如表:

(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为
,求
,并估计
的预报值;
(Ⅱ)现准备勘探新井
,若通过1、3、5、7号井计算出的
的值(
精确到0.01)相比于(Ⅰ)中
的值之差不超过10%,则使用位置最接近的已有旧井
,否则在新位置打开,请判断可否使用旧井?
(参考公式和计算结果:
)
(Ⅲ)设出油量与勘探深度的比值
不低于20的勘探并称为优质井,那么在原有井号1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是优质井的概率.

(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为



(Ⅱ)现准备勘探新井





(参考公式和计算结果:

(Ⅲ)设出油量与勘探深度的比值

某城市城镇化改革过程中最近五年居民生活用水量逐年上升,下表是2011年至2015年的统计数据:
(1)利用所给数据求年居民生活用水量与年份之间的回归直线方程
;
(2)根据改革方案,预计在2020年底城镇改革结束,到时候居民的生活用水量将趋于稳定,预测该城市2023年的居民生活用水量.
参考公式:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
居民生活用水量(万吨) | 236 | 246 | 257 | 276 | 286 |
(1)利用所给数据求年居民生活用水量与年份之间的回归直线方程

(2)根据改革方案,预计在2020年底城镇改革结束,到时候居民的生活用水量将趋于稳定,预测该城市2023年的居民生活用水量.
参考公式:

张三同学从7岁起到13岁每年生日时对自己的身高测量后记录如下表:
(Ⅰ)求身高
关于年龄
的线性回归方程;
(Ⅱ)利用(Ⅰ)中的线性回归方程,分析张三同学7岁至13岁身高的变化情况,如17岁之前都符合这一变化,请预测张三同学15岁时的身高.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,
.
年龄![]() | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
身高![]() | 121 | 128 | 135 | 141 | 148 | 154 | 160 |
(Ⅰ)求身高


(Ⅱ)利用(Ⅰ)中的线性回归方程,分析张三同学7岁至13岁身高的变化情况,如17岁之前都符合这一变化,请预测张三同学15岁时的身高.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:


某商场营销人员进行某商品的市场营销调查时发现,每回馈消费者一定的点数,该商品每天的销量就会发生一定的变化,经过试点统计得到以下表:
(Ⅰ)经分析发现,可用线性回归模型
拟合当地该商品销量
(千件)与返还点数
之间的相关关系.试预测若返回6个点时该商品每天的销量;
(Ⅱ)若节日期间营销部对商品进行新一轮调整.已知某地拟购买该商品的消费群体十分庞大,经营销调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:
(1)求这200位拟购买该商品的消费者对返点点数的心理预期值
的样本平均数及中位数的估计值(同一区间的预期值可用该区间的中点值代替;估计值精确到0.1);
(2)将对返点点数的心理预期值在
和
的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,设抽出的3人中 “欲望紧缩型”消费者的人数为随机变量
,求
的分布列及数学期望.
反馈点数t | 1 | 2 | 3 | 4 | 5 |
销量(百件)/天 | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(Ⅰ)经分析发现,可用线性回归模型



(Ⅱ)若节日期间营销部对商品进行新一轮调整.已知某地拟购买该商品的消费群体十分庞大,经营销调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:
返还点数预期值区间 (百分比) | [1,3) | [3,5) | [5,7) | [7,9) | [9,11) | [11,13) |
频数 | 20 | 60 | 60 | 30 | 20 | 10 |
(1)求这200位拟购买该商品的消费者对返点点数的心理预期值

(2)将对返点点数的心理预期值在



