- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 相关关系
- 散点图
- + 回归直线方程
- 解释回归直线方程的意义
- 用回归直线方程对总体进行估计
- 根据回归方程求原数据中的值
- 最小二乘法
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为稳定当前物价,某市物价部门对本市的5家商场的某商品一天的销售量及其价格进行调査,5家商场该商品的售价
(元)和销售量
(件)之间的一组数据如下表所示:
由散点图可知,销售量
与价格
之间有较好的线性相关关系,其线性回归方程是
,则
的值为( )


价格![]() | 8.5 | 9 | 9.5 | 10 | 10.5 |
销售量![]() | 12 | 11 | 9 | 7 | 6 |
由散点图可知,销售量




A.38.4 | B.39.4 | C.40.4 | D.40.6 |
某工厂提供了节能降耗技术改造后生产产品过程中的产量
(吨)与相应的生产能耗
(吨)的几组对照数据.
(1)请根据表中提供的数据,用最小二乘法求出
关于
的线性回归方程
;
(2)试根据(1)求出的线性回归方程,预测产量为
(吨)的生产能耗.相关公式:
,
.


![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
(1)请根据表中提供的数据,用最小二乘法求出



(2)试根据(1)求出的线性回归方程,预测产量为



某同学在只听课不做作业的情况下,数学总不及格
后来他终于下定决心要改变这一切,他以一个月为周期,每天都作一定量的题,看每次月考的数学成绩,得到5个月的数据如下表:
根据上表得到回归直线方程
,若该同学数学想达到90分,则估计他每天至少要做的数学题数为


一个月内每天做题数x | 5 | 8 | 6 | 4 | 7 |
数学月考成绩y | 82 | 87 | 84 | 81 | 86 |
根据上表得到回归直线方程



A.8 | B.9 | C.10 | D.11 |
为了解某地区某种产品的年产量
(单位:吨)对价格
(单位:千元/吨)和利润
的影响,对近五年该农产品的年产量和价格统计如下表:

(1)求
关于
的线性回归方程
;
(2)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润
取到最大值?(保留两位小数)
参考公式:
,




(1)求



(2)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润

参考公式:



某公司近年来科研费用支出
万元与公司所获得利润
万元之间有如下的统计数据:
(1)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;
(2)试根据(1)求出的线性回归方程,预测该公司科研费用支出为10万元时公司所获得的利润.
参考公式:用最小二乘法求线性回归方程
的系数公式:

参考数据:2×18+3×27+4×32+5×35=420


x | 2 | 3 | 4 | 5 |
Y | 18 | 27 | 32 | 35 |
(1)请根据上表提供的数据,用最小二乘法求出



(2)试根据(1)求出的线性回归方程,预测该公司科研费用支出为10万元时公司所获得的利润.
参考公式:用最小二乘法求线性回归方程


参考数据:2×18+3×27+4×32+5×35=420
某单位为了了解用电量y(度)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:
由表中数据得线性回归方程
,预测当气温为-4℃时用电量度数为( )
气温x(℃) | 18 | 13 | 10 | -1 |
用电量(度) | 24 | 34 | 38 | 64 |
由表中数据得线性回归方程

A.68 | B.67 | C.65 | D.64 |
已知变量
,
具有线性相关关系,它们之间的一组数据如下表所示,若
关于
的线性回归方程为
,则
的值为( )






![]() | 1 | 2 | 3 | 4 |
![]() | 0.1 | 1.8 | ![]() | 4 |
A.3.1 | B.2.9 | C.2 | D.3 |