- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- 用样本估计总体
- + 变量间的相关关系
- 相关关系
- 散点图
- 回归直线方程
- 最小二乘法
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
“有黑扫黑、无黑除恶、无恶治乱”,维护社会稳定和和平发展.扫黑除恶期间,大量违法分子主动投案,某市公安机关对某月连续7天主动投案的人员进行了统计,
表示第
天主动投案的人数,得到统计表格如下:
(1)若
与
具有线性相关关系,请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;
(2)判定变量
与
之间是正相关还是负相关.(写出正确答案,不用说明理由)
(3)预测第八天的主动投案的人数(按四舍五入取到整数).
参考公式:
,
.


![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
![]() | 3 | 4 | 5 | 5 | 5 | 6 | 7 |
(1)若





(2)判定变量


(3)预测第八天的主动投案的人数(按四舍五入取到整数).
参考公式:


《中华人民共和国道路交通安全法》第
条的相关规定:机动车行经人行道时,应当减速慢行;遇行人正在通过人行道,应当停车让行,俗称“礼让斑马线”, 《中华人民共和国道路交通安全法》第
条规定:对不礼让行人的驾驶员处以扣
分,罚款
元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员“礼让斑马线”行为统计数据:
(1)请利用所给数据求违章人数
与月份
之间的回归直线方程
;
(2)预测该路口
月份的不“礼让斑马线”违章驾驶员人数.
参考公式:
,参考数据:
.




月份 | ![]() | ![]() | ![]() | ![]() | ![]() |
违章驾驶员人数 | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)请利用所给数据求违章人数




(2)预测该路口

参考公式:


PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5浓度的数据如下表:
(1)根据上表数据,用最小二乘法,求出y关于x的线性回归方程
•x
;
(2)若周六同一时间段车流量200万辆,试根据(1)求出的线性回归方程,预测此时PM2.5的浓度为多少?
(参考公式:
,
•
;参考数据:
xi=540,
yi=420)
时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
车流量x(万辆) | 100 | 102 | 108 | 114 | 116 |
PM2.5的浓度y(微克/立方米) | 78 | 80 | 84 | 88 | 90 |
(1)根据上表数据,用最小二乘法,求出y关于x的线性回归方程


(2)若周六同一时间段车流量200万辆,试根据(1)求出的线性回归方程,预测此时PM2.5的浓度为多少?
(参考公式:





已知某产品的销售额
与广告费用
之间的关系如下表:
若根据表中的数据用最小二乘法求得
对
的回归直线方程为
,则下列说法中错误的是( )


![]() | 0 | 1 | 2 | 3 | 4 |
![]() | 10 | 15 | ![]() | 30 | 35 |
若根据表中的数据用最小二乘法求得



A.产品的销售额与广告费用成正相关 |
B.该回归直线过点![]() |
C.当广告费用为10万元时,销售额一定为74万元 |
D.![]() |
至
年底,我国发明专利申请量已经连续
年位居世界首位,下表是我国
年至
年发明专利申请量以及相关数据.

注:年份代码
~
分别表示
~
.
(1)可以看出申请量每年都在增加,请问这几年中哪一年的增长率达到最高,最高是多少?
(2)建立
关于
的回归直线方程(精确到
),并预测我国发明专利申请量突破
万件的年份.
参考公式:回归直线的斜率和截距的最小二乘法估计分别为
,





注:年份代码




(1)可以看出申请量每年都在增加,请问这几年中哪一年的增长率达到最高,最高是多少?
(2)建立




参考公式:回归直线的斜率和截距的最小二乘法估计分别为


近年来,我国工业经济发展迅速,工业增加值连年攀升,某研究机构统计了近十年(从2008年到2017年)的工业增加值(万亿元),如下表:
依据表格数据,得到下面的散点图及一些统计量的值.

(1)根据散点图和表中数据,此研究机构对工业增加值
(万亿元)与年份序号
的回归方程类型进行了拟合实验,研究人员甲采用函数
,其拟合指数
;研究人员乙采用函数
,其拟合指数
;研究人员丙采用线性函数
,请计算其拟合指数,并用数据说明哪位研究人员的函数类型拟合效果最好.(注:相关系数
与拟合指数
满足关系
).
(2)根据(1)的判断结果及统计值,建立
关于
的回归方程(系数精确到0.01);
(3)预测到哪一年的工业增加值能突破30万亿元大关.
附:样本
的相关系数
,
,
,
.
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份序号![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
工业增加值![]() | 13.2 | 13.8 | 16.5 | 19.5 | 20.9 | 22.2 | 23.4 | 23.7 | 24.8 | 28 |
依据表格数据,得到下面的散点图及一些统计量的值.
![]() | ![]() | ![]() | ![]() | ![]() |
5.5 | 20.6 | 82.5 | 211.52 | 129.6 |

(1)根据散点图和表中数据,此研究机构对工业增加值










(2)根据(1)的判断结果及统计值,建立


(3)预测到哪一年的工业增加值能突破30万亿元大关.
附:样本






“绿水青山就是金山银山”的生态文明发展理念已经深入人心,这将推动新能源汽车产业的迅速发展.下表是近几年我国某地区新能源乘用车的年销售量与年份的统计表:
某机构调查了该地区30位购车车主的性别与购车种类情况,得到的部分数据如下表所示:
(1)求新能源乘用车的销量
关于年份
的线性相关系数
,并判断
与
是否线性相关;
(2)请将上述
列联表补充完整,并判断是否有
的把握认为购车车主是否购置新能源乘用车与性别有关;
(3)若以这30名购车车主中购置新能源乘用车的车主性别比例作为该地区购置新能源乘用车的车主性别比例,从该地区购置新能源乘用车的车主中随机选取50人,记选到女性车主的人数为X,求X的数学期望与方差.
参考公式:
,
,其中
.
,若
,则可判断
与
线性相关.
附表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
销量(万台) | 8 | 10 | 13 | 25 | 24 |
某机构调查了该地区30位购车车主的性别与购车种类情况,得到的部分数据如下表所示:
| 购置传统燃油车 | 购置新能源车 | 总计 |
男性车主 | | 6 | 24 |
女性车主 | 2 | | |
总计 | | | 30 |
(1)求新能源乘用车的销量





(2)请将上述


(3)若以这30名购车车主中购置新能源乘用车的车主性别比例作为该地区购置新能源乘用车的车主性别比例,从该地区购置新能源乘用车的车主中随机选取50人,记选到女性车主的人数为X,求X的数学期望与方差.
参考公式:







附表:
![]() | 0.10 | 0.05 | 0.025 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
随着时代的进步、科技的发展,“网购”已发展成为一种新的购物潮流,足不出户就可以在网上买到自己想要的东西,而且两三天就会送到自己的家门口,某网店统计了2015年至2019年(2015年时t=1)在该网店的购买人数
(单位:百人)的数据如下表:
(1)依据表中给出的数据,求出y关于t的回归直线方程;
(2)根据(1)中的回归直线方程,预测2020年在该网店购物的人数是否有可能破万?
附:参考公式:回归方程
中:
,参考数据:
.

年份(t) | 1 | 2 | 3 | 4 | 5 |
![]() | 24 | 27 | 41 | 64 | 79 |
(1)依据表中给出的数据,求出y关于t的回归直线方程;
(2)根据(1)中的回归直线方程,预测2020年在该网店购物的人数是否有可能破万?
附:参考公式:回归方程



某设备的使用年限x(单位:年)与所支付的维修费用y(单位:千元)的一组数据如下表:从散点图分析,y与x线性相关,根据上表中数据可得其线性回归方程
中的
.由此预测该设备的使用年限为6年时需支付的维修费用是( )


使用年限x | 2 | 3 | 4 | 5 |
维修费用y | 2 | 3.4 | 5 | 6.6 |
A.7.2千元 | B.7.8千元 | C.8.1千元 | D.9.5千元 |