- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- 用样本估计总体
- + 变量间的相关关系
- 相关关系
- 散点图
- 回归直线方程
- 最小二乘法
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
“团购”已经渗透到我们每个人的生活,这离不开快递行业的发展,下表是2013-2017年全国快递业务量(x亿件:精确到0.1)及其增长速度(y%)的数据

(1)试计算2012年的快递业务量;
(2)分别将2013年,2014年,…,2017年记成年的序号t:1,2,3,4,5;现已知y与t具有线性相关关系,试建立y关于t的回归直线方程
;
(3)根据(2)问中所建立的回归直线方程,估算2019年的快递业务量
附:回归直线的斜率和截距地最小二乘法估计公式分别为:
,

(1)试计算2012年的快递业务量;
(2)分别将2013年,2014年,…,2017年记成年的序号t:1,2,3,4,5;现已知y与t具有线性相关关系,试建立y关于t的回归直线方程

(3)根据(2)问中所建立的回归直线方程,估算2019年的快递业务量
附:回归直线的斜率和截距地最小二乘法估计公式分别为:


某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数
与烧开一壶水所用时间
的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).

表中
.
(1)根据散点图判断,
与
哪一个更适宜作烧水时间
关于开关旋钮旋转的弧度数
的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立
关于
的回归方程;
(3)若旋转的弧度数
与单位时间内煤气输出量
成正比,那么
为多少时,烧开一壶水最省煤气?
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为
.



![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中

(1)根据散点图判断,




(2)根据判断结果和表中数据,建立


(3)若旋转的弧度数



附:对于一组数据



某公司为确定明年投入某产品的广告支出,对近5年的年广告支出
(单位:万元)与年销售额
(单位:万元)进行了初步统计,如下表所示.
经测算,年广告支出
与年销售额
满足线性回归方程
,则
的值为_____.


年广告支出![]() | 2 | 3 | 5 | 7 | 8 |
年销售额![]() | 28 | 37 | ![]() | 60 | 70 |
经测算,年广告支出




己知某产品的销售额
与广告费用
之间的关系如表:
若求得其线性回归方程为
,则预计当广告费用为
万元时的销售额为__________.


![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
若求得其线性回归方程为


随着智能手机的普及,使用手机上网成为了人们日常生活的一部分,很多消费者对手机流量的需求越来越大.长沙某通信公司为了更好地满足消费者对流量的需求,准备推出一款流量包.该通信公司选了5个城市(总人数、经济发展情况、消费能力等方面比较接近)采用不同的定价方案作为试点,经过一个月的统计,发现该流量包的定价
:(单位:元/月)和购买人数
(单位:万人)的关系如表:
(1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合
与
的关系?并指出是正相关还是负相关;
(2)①求出
关于
的回归方程;
②若该通信公司在一个类似于试点的城市中将这款流量包的价格定位25元/ 月,请用所求回归方程预测长沙市一个月内购买该流量包的人数能否超过20 万人.
参考数据:
,
,
.
参考公式:相关系数
,回归直线方程
,其中
,
.


流量包的定价(元/月) | 30 | 35 | 40 | 45 | 50 |
购买人数(万人) | 18 | 14 | 10 | 8 | 5 |
(1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合


(2)①求出


②若该通信公司在一个类似于试点的城市中将这款流量包的价格定位25元/ 月,请用所求回归方程预测长沙市一个月内购买该流量包的人数能否超过20 万人.
参考数据:



参考公式:相关系数




为了研究某班学生的脚长
(单位厘米)和身高
(单位厘米)的关系,从该班随机抽取
名学生,根据测量数据的散点图可以看出
与
之间有线性相关关系,设其回归直线方程为
.已知
,
,
.该班某学生的脚长为
,据此估计其身高为( )










A.![]() | B.![]() | C.![]() | D.![]() |
某公司为了解某产品的获利情况,将今年1至7月份的销售收入
(单位:万元)与纯利润
(单位:万元)的数据进行整理后,得到如下表格:
该公司先从这7组数据中选取5组数据求纯利润
关于销售收入
的线性回归方程,再用剩下的2组数据进行检验.假设选取的是2月至6月的数据.
(1)求纯利润
关于销售收入
的线性回归方程(精确到0.01);
(2)若由线性回归方程得到的估计数据与检验数据的误差均不超过0.1万元,则认为得到的线性回归方程是理想的.试问该公司所得线性回归方程是否理想?
参考公式:
,
,
,
;参考数据:
.


月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
销售收入![]() | 13 | 13.5 | 13.8 | 14 | 14.2 | 14.5 | 15 |
纯利润![]() | 3.2 | 3.8 | 4 | 4.2 | 4.5 | 5 | 5.5 |
该公司先从这7组数据中选取5组数据求纯利润


(1)求纯利润


(2)若由线性回归方程得到的估计数据与检验数据的误差均不超过0.1万元,则认为得到的线性回归方程是理想的.试问该公司所得线性回归方程是否理想?
参考公式:





某企业一种商品的产量与单位成本数据如表:
现根据表中所提供的数据,求得
关于
的线性回归方程为
,则
值等于( )
产量![]() | 2 | 3 | 4 |
单位成本![]() ![]() | 3 | a | 7 |
现根据表中所提供的数据,求得




A.![]() | B.![]() | C.![]() | D.![]() |
高三学生为了迎接高考,要经常进行模拟考试,锻炼应试能力,某学生从升入高三到高考要参加
次模拟考试,下面是高三第一学期某学生参加
次模拟考试的数学成绩表:
(1)已知该考生的模拟考试成绩
与模拟考试的次数
满足回归直线方程
,若高考看作第
次模拟考试,试估计该考生的高考数学成绩;
(2)把
次模拟考试的成绩单放在五个相同的信封中,从中随机抽取
个信封研究成绩,求抽取的
个信封中恰有
个成绩不等于平均值
的概率.
参考公式:
,
.


模拟考试第![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
考试成绩![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)已知该考生的模拟考试成绩




(2)把





参考公式:

