- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- 用样本估计总体
- + 变量间的相关关系
- 相关关系
- 散点图
- 回归直线方程
- 最小二乘法
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线
上,则这组样本数据的样本相关系数为 .

某单位为了了解用电量
度与气温
之间的关系,随机统计了某四天的用电量与当天气温,列表如下:

由表中数据得到回归直线方程
.据此预测当气温为
时,用电量为______(单位:度).



由表中数据得到回归直线方程


经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量
(千辆/小时)与汽车的平均速度
(千米/小时)之间的函数关系为:
.问:在该时段内,当汽车的平均速度
等于 时,车流量最大?




(本题满分14分)某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表
(1)画出散点图.观察散点图,说明两个变量有怎样的相关性。
(2)用最小二乘法计算利润额y对销售额x的回归直线方程.
(3)当销售额为4(千万元)时,估计利润额的大小.
商店名称 | A | B | C | D | E E |
销售额x(千万元) | 3 | 5 | 6 | 7 | 9 9 |
利润额y(千万元) | 2 | 3 | 3 | 4 | 5 |
(1)画出散点图.观察散点图,说明两个变量有怎样的相关性。
(2)用最小二乘法计算利润额y对销售额x的回归直线方程.
(3)当销售额为4(千万元)时,估计利润额的大小.
下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②设有一个回归方程
,变量x增加一个单位时,y平均增加5个单位;
③线性回归直线方程
必过
;
④在一个2×2列联表中,由计算得K2=13.079,则有99%的把握确认这两个变量间有关系;
其中错误的个数是()
①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②设有一个回归方程

③线性回归直线方程


④在一个2×2列联表中,由计算得K2=13.079,则有99%的把握确认这两个变量间有关系;
其中错误的个数是()
A.0 | B.1 | C.2 | D.3 |
(本小题满分13分,(Ⅰ)小问10分,(Ⅱ)小问3分)
随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:
(Ⅰ)求y关于t的回归方程
(Ⅱ)用所求回归方程预测该地区2015年(
)的人民币储蓄存款.
附:回归方程
中
随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 |
时间代号![]() | 1 | 2 | 3 | 4 | 5 |
储蓄存款![]() | 5 | 6 | 7 | 8 | 10 |
(Ⅰ)求y关于t的回归方程

(Ⅱ)用所求回归方程预测该地区2015年(

附:回归方程


下表为某班5位同学身高x(单位:cm)与体重y(单位kg)的数据,
若两个量间的回归直线方程为
,则身高为185cm的学生的体重约为( )
身高 | 170 | 171 | 166 | 178 | 160 |
体重 | 75 | 80 | 70 | 85 | 65 |
若两个量间的回归直线方程为

A.87.6kg | B.89.5kg | C.91.4kg | D.92.3kg |
实验测得四组(x,y)的值为(1,2),(2,3),(3,4),(4,5),则y与x之间的回归直线方程为()
A.![]() | B.![]() | C.![]() | D.![]() |