- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- + 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为有效促进我市体育产业和旅游产业有机融合,提高我市的知名度,更好地宣传萍乡武功山,并通过赛事向社会各界传播健康、低碳、绿色、环保的运动理念。在今年9月21日第九届环鄱阳湖国际自行车大赛第九站比赛在我市武功山举行。在这次89.5公里的自行车个人赛中,其中25名参赛选手的成绩(单位:分钟)的茎叶图如图所示:
(1)现将参赛选手按成绩由好到差编为1~25号,再用系统抽样方法从中选取5人,已知选手甲的成绩为145分钟,若甲被选取,求被选取的其余4名选手的成绩的平均数;
(2)若从总体中选取一个样本,使得该样本的平均水平与总体相同,且样本的方差不大于7,则称选取的样本具有集中代表性,试从总体(25名参赛选手的成绩)选取一个具有集中代表性且样本容量为5的样本,并求该样本的方差.
14 | 0 | 1 | 2 | 3 | 5 | 6 | 6 | 6 | 6 | 8 | 9 |
15 | 0 | 2 | 3 | 4 | 5 | 5 | 5 | 7 | 9 | | |
16 | 0 | 0 | 5 | 6 | 7 | | | | | | |
(1)现将参赛选手按成绩由好到差编为1~25号,再用系统抽样方法从中选取5人,已知选手甲的成绩为145分钟,若甲被选取,求被选取的其余4名选手的成绩的平均数;
(2)若从总体中选取一个样本,使得该样本的平均水平与总体相同,且样本的方差不大于7,则称选取的样本具有集中代表性,试从总体(25名参赛选手的成绩)选取一个具有集中代表性且样本容量为5的样本,并求该样本的方差.
某市体育局将从甲、乙、丙、丁四人中选一人参加全省100米仰泳比赛,现将他们最近集训的10次成绩(单位:秒)的平均数与方差制成表格如下:
根据表中的数据,应选哪位选手参加全省的比赛( )
| 甲 | 乙 | 丙 | 丁 |
平均数 | ![]() | ![]() | ![]() | ![]() |
方差 | ![]() | ![]() | ![]() | ![]() |
根据表中的数据,应选哪位选手参加全省的比赛( )
A.甲 | B.乙 | C.丙 | D.丁 |
2017年诺贝尔奖陆续揭晓,北京时间10月2日17:30首先公布了生理学和医学奖,获奖者分别是三位美国科学家霍尔(Jeffrey
请根据上面表格回答下面问题:
(1)请分别估计出该校男生和女生的睡眠平均时间(以表格中的频率代替总体的概率);
(2)若从全校(人数较多,且男女人数相当)睡眠最佳状态的人群中随机选出
人进行深度睡眠时间测试,记选出的女生人数为
,求
的期望
A.Hall)、罗斯巴什(Michael Rosbash)和杨(Michael W.Young),以表彰他们“发现控制生理节律的分子机制”,通过他们的研究成果发现,人类每天睡眠时间在7-9小时为最佳状态,从某大学随机挑选了100名学生(男生、女生各50名)做睡眠时间统计调查,调查结果如下: |
睡眠时间(小时) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
男生 | 5 | 6 | 12 | 12 | 8 | 5 | 2 |
女生 | 0 | 2 | 6 | 18 | 12 | 10 | 2 |
请根据上面表格回答下面问题:
(1)请分别估计出该校男生和女生的睡眠平均时间(以表格中的频率代替总体的概率);
(2)若从全校(人数较多,且男女人数相当)睡眠最佳状态的人群中随机选出



某纺织厂为了生产一种高端布料,准备从
农场购进一批优质棉花,厂方技术人员从
农场存储的优质棉花中随机抽取了
处棉花,分别测量了其纤维长度(单位:
)的均值,收集到
个样本数据,并制成如下频数分布表:

(1)求这
个样本数据的平均数(同一组数据用该区间的中点值作代表);
(2)①用频率估计概率,求从这批棉花中随机抽取处期限为平均长度的概率
;
②纺织厂将
农场送来的这批优质棉进行二次检验,从中随机抽取
处测量其纤维均值
,数据如下:

若
个样本中纤维均值
的频率不低于①中
,即可判断该批优质棉花合格,否则认为农场运送是掺杂了次品,判断该批棉花不合格.按照此依据判断
农场送来的这批棉花是否为合格的优质棉花,并说明理由.






(1)求这

(2)①用频率估计概率,求从这批棉花中随机抽取处期限为平均长度的概率

②纺织厂将




若




某蛋糕店每天制作生日蛋糕若干个,每个生日蛋糕成本为50元,每个蛋糕的售价为100元,如果当天卖不完,剩余的蛋糕作垃圾处理.现搜集并整理了100天生日蛋糕的日需求量(单位:个),得到如图所示的柱状图.100天记录的各需求量的频率作为每天各需求量发生的概率.

(1)若蛋糕店一天制作17个生日蛋糕.
①求当天的利润
(单位:元)关于当天需求量
的函数解析式;
②求当天的利润不低于600元的概率.
(2)若蛋糕店计划一天制作16个或17个生日蛋糕,请你以蛋糕店一天利润的平均值作为决策依据,应该制作16个还是17个生日蛋糕?

(1)若蛋糕店一天制作17个生日蛋糕.
①求当天的利润


②求当天的利润不低于600元的概率.
(2)若蛋糕店计划一天制作16个或17个生日蛋糕,请你以蛋糕店一天利润的平均值作为决策依据,应该制作16个还是17个生日蛋糕?
甲、乙两人参加一个射击的中奖游戏比赛,在相同条件下各打靶50次,统计每次打靶所得环数,得下列频数分布表.
比赛中规定所得环数为1,2,3,4时获奖一元,所得环数为5,6,7时获奖二元,所得环数为8,9时获奖三元,所得环数为10时获奖四元,没命中则无奖.
(1)根据上表,在答题卡给定的坐标系内画出甲射击50次获奖金额(单位:元)的条形图;

(2)估计甲射击1次所获奖至少为三元的概率;
(3)要从甲、乙两人中选拔一人参加射击比赛,请你根据甲、乙两人所获奖金额的平均数和方差作出选择.
环数 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
甲的频数 | 0 | 1 | 4 | 7 | 14 | 16 | 6 | 2 |
乙的频数 | 1 | 2 | 5 | 6 | 10 | 16 | 8 | 2 |
比赛中规定所得环数为1,2,3,4时获奖一元,所得环数为5,6,7时获奖二元,所得环数为8,9时获奖三元,所得环数为10时获奖四元,没命中则无奖.
(1)根据上表,在答题卡给定的坐标系内画出甲射击50次获奖金额(单位:元)的条形图;

(2)估计甲射击1次所获奖至少为三元的概率;
(3)要从甲、乙两人中选拔一人参加射击比赛,请你根据甲、乙两人所获奖金额的平均数和方差作出选择.
移动支付极大地方便了我们的生活,也为整个杜会节约了大量的资源与时间成本.2018年国家高速公路网力推移动支付车辆高速通行费.推广移动支付之前,只有两种支付方式:现金支付或
支付,其中使用现金支付车辆比例的为
,使用
支付车辆比例约为
,推广移动支付之后,越来越多的车主选择非现金支付,如表是推广移动支付后,随机抽取的某时间段内所有经由某高速公路收费站驶出高速的车辆的通行费支付方式分布及其他相关数据:
并以此作为样本来估计所有在此高速路上行驶的车辆行费支付方式的分布.
已知需要取卡的车辆进入高速平均每车耗时为10秒,不需要取卡的车辆进入高速平均每车耗时为4秒.
(Ⅰ)若此高速公路的日均车流量为9080辆,估计推广移动支付后比推广移动支付前日均可少发卡多少张?
(Ⅱ)在此高速公路上,推广移动支付后平均每辆车进出高速收费站总耗时能否比推广移动支付前大约减少一半?说明理由.




支付方式 | 是否需要在入口处取卡 | 是否需要停车支付 | 数量统计(辆) | 平均每辆车行驶出耗时(秒) |
现金支付 | 是 | 是 | 135 | 30 |
扫码支付 | 是 | 是 | 240 | 15 |
![]() | 否 | 否 | 750 | 4 |
车辆识别支付 | 否 | 否 | 375 | 4 |
并以此作为样本来估计所有在此高速路上行驶的车辆行费支付方式的分布.
已知需要取卡的车辆进入高速平均每车耗时为10秒,不需要取卡的车辆进入高速平均每车耗时为4秒.
(Ⅰ)若此高速公路的日均车流量为9080辆,估计推广移动支付后比推广移动支付前日均可少发卡多少张?
(Ⅱ)在此高速公路上,推广移动支付后平均每辆车进出高速收费站总耗时能否比推广移动支付前大约减少一半?说明理由.
某校为了了解学生近视的情况,对四个非毕业年级各班的近视学生人数做了统计,每个年级都有7个班,如果某个年级的每个班的近视人数都不超过5人,则认定该年级为“学生视力保护达标年级”,这四个年级各班近视学生人数情况统计如下表:
初一年级 平均值为2,方差为2
初二年级 平均值为1,方差大于0
高一年级 中位数为3,众数为4
高二年级 平均值为3,中位数为4
从表中数据可知:一定是“学生视力保护达标年级”的是( )
初一年级 平均值为2,方差为2
初二年级 平均值为1,方差大于0
高一年级 中位数为3,众数为4
高二年级 平均值为3,中位数为4
从表中数据可知:一定是“学生视力保护达标年级”的是( )
A.初一年级 | B.初二年级 | C.高一年级 | D.高二年级 |
甲,乙两名射击运动员在相同条件下进行水平测试,各射击10次,命中的环数如下:
(l)分别计算两组数据的平均数及方差;
(2)现要从甲、乙两人中选拔一人去参加比赛,根据上面的测试结果,你认为应该派谁去合适?并且说明理由.
甲 | 8 | 6 | 7 | 8 | 6 | 5 | 9 | 10 | 4 | 7 |
乙 | 6 | 7 | 7 | 8 | 6 | 7 | 8 | 7 | 9 | 5 |
(l)分别计算两组数据的平均数及方差;
(2)现要从甲、乙两人中选拔一人去参加比赛,根据上面的测试结果,你认为应该派谁去合适?并且说明理由.
我们正处于一个大数据飞速发展的时代,对于大数据人才的需求也越来越大,其岗位大致可分为四类:数据开发、数据分析、数据挖掘、数据产品. 以北京为例,2018年这几类工作岗位的薪资(单位:万元/月)情况如下表所示:
由表中数据可得各类岗位的薪资水平高低情况为( )
薪资/岗位 | ![]() | ![]() | ![]() | ![]() |
数据开发 | ![]() | ![]() | ![]() | ![]() |
数据分析 | ![]() | ![]() | ![]() | ![]() |
数据挖掘 | ![]() | ![]() | ![]() | ![]() |
数据产品 | ![]() | ![]() | ![]() | ![]() |
由表中数据可得各类岗位的薪资水平高低情况为( )
A.数据挖掘>数据开发>数据产品>数据分析 |
B.数据挖掘>数据产品>数据开发>数据分析 |
C.数据挖掘>数据开发>数据分析>数据产品 |
D.数据挖掘>数据产品>数据分析>数据开发 |