- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- + 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数据
,
,
,
是上海普通职
(
,
)个人的年收入,设这
个数据的中位数为
,平均数为
,方差为
,如果再加上世界首富的年收入
,则这
个数据中,下列说法正确( )













A.年收入平均数大大增大,中位数一定变大,方差可能不变 |
B.年收入平均数大大增大,中位数可能不变,方差变大 |
C.年收入平均数大大增大,中位数可能不变,方差也不变 |
D.年收入平均数大大增大,中位数可能不变,方差可能不变 |
个体户李某经营一家快餐店,下面是快餐店所有人员8月份的工资表:
(1)计算所有人员8月份的平均工资;
(2)计算出的平均工资能否反映打工人员这个月收入的一般水平?为什么?
(3)去掉李某的工资后,再计算平均工资,这个平均工资能代表打工人员这个月的收入水平吗?
(4)根据以上计算,以统计的观点,你对(3)的结果有什么看法?
李某 | 大厨 | 二厨 | 采购员 | 杂工 | 服务生 | 会计 |
30000元 | 4500元 | 3500元 | 4000元 | 3200元 | 3200元 | 4100元 |
(1)计算所有人员8月份的平均工资;
(2)计算出的平均工资能否反映打工人员这个月收入的一般水平?为什么?
(3)去掉李某的工资后,再计算平均工资,这个平均工资能代表打工人员这个月的收入水平吗?
(4)根据以上计算,以统计的观点,你对(3)的结果有什么看法?
从某商场随机抽取了2000件商品,按商品价格(元)进行统计,所得频率分布直方图如图所示.记价格在
,
,
对应的小矩形的面积分别为
,且
.

(1)按分层抽样从价格在
,
的商品中共抽取6件,再从这6件中随机抽取2件作价格对比,求抽到的两件商品价格差超过800元的概率;
(2)在清明节期间,该商场制定了两种不同的促销方案:
方案一:全场商品打八折;
方案二:全场商品优惠如下表,如果你是消费者,你会选择哪种方案?为什么?(同一组中的数据用该组区间中点值作代表)






(1)按分层抽样从价格在


(2)在清明节期间,该商场制定了两种不同的促销方案:
方案一:全场商品打八折;
方案二:全场商品优惠如下表,如果你是消费者,你会选择哪种方案?为什么?(同一组中的数据用该组区间中点值作代表)
商品价格 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
优惠(元) | 30 | 50 | 140 | 160 | 280 | 320 |
某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:

记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),
表示购机的同时购买的易损零件数.
(Ⅰ)若
=19,求y与x的函数解析式;
(Ⅱ)若要求“需更换的易损零件数不大于
”的频率不小于0.5,求
的最小值;
(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?

记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),

(Ⅰ)若

(Ⅱ)若要求“需更换的易损零件数不大于


(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?
在2018、2019每高考数学全国Ⅰ卷中,第22题考查坐标系和参数方程,第23题考查不等式选讲.2018年髙考结束后,某校经统计发现:选择第22题的考生较多并且得分率也较高.为研究2019年选做题得分情况,该校高三质量检测的命题完全采用2019年高考选做题模式,在测试结束后,该校数学教师对全校高三学生的选做题得分进行抽样统计,得到两题得分的统计表如下(已知每名学生只选做—道题):
第22题的得分统计表
第23题的得分统计表
(1)完成如下2×2列联表,并判断能否有99%的把握认为“选做题的选择”与“文、理科的科类”有关;
(2)若以全体高三学生选题的平均得分作为决策依据,如果你是考生,根据上面统计数据,你会选做哪道题,并说明理由.
附:
第22题的得分统计表
得分 | 0 | 3 | 5 | 8 | 10 |
理科人数 | 50 | 50 | 75 | 125 | 200 |
文科人数 | 25 | 25 | 125 | 0 | 25 |
第23题的得分统计表
得分 | 0 | 3 | 5 | 8 | 10 |
理科人数 | 30 | 52 | 58 | 60 | 200 |
文科人数 | 5 | 10 | 10 | 5 | 70 |
(1)完成如下2×2列联表,并判断能否有99%的把握认为“选做题的选择”与“文、理科的科类”有关;
| 选做22题 | 选做23题 | 总计 |
理科人数 | | | |
文科人数 | | | |
总计 | | | |
(2)若以全体高三学生选题的平均得分作为决策依据,如果你是考生,根据上面统计数据,你会选做哪道题,并说明理由.
附:

![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
党的十九大报告指出,在全面建成小康社会的决胜阶段,让贫困地区同全国人民共同进入全面小康社会是我们党的庄严承诺.在“脱真贫、真脱贫”的过程中,精准扶贫助推社会公平显得尤其重要.若某地区有100户贫困户,经过一年扶贫后,为了考查该地区的“精准扶贫”的成效
该地区脱贫标准为“每户人均年收入不少于4000元”
,现从该地区随机抽取A、B两个村庄,再从这两个村庄的贫困户中随机抽取20户,调查每户的现人均年收入,绘制如图所示的茎叶图
单位:百元
.

(1)观察茎叶图中的数据,判断哪个村庄扶贫成效较好?并说明理由;
(2)计划对没有脱贫的贫困户进一步实行“精准扶贫”,下一年的资金投入方案如下:对人均年收入不高于2000元的贫困户,每户每年增加扶贫资金5000元;对人均年收入高于2000元但不高于3000元的贫困户,每户每年增加扶贫资金3000元;对人均年收入高于3000元但不高于4000元的贫困户,每户每年增加扶贫资金1000元;对已经脱贫的贫困户不再增加扶贫资金投入.依据此方案,试估计下一年该地区共需要增加扶贫资金多少元?





(1)观察茎叶图中的数据,判断哪个村庄扶贫成效较好?并说明理由;
(2)计划对没有脱贫的贫困户进一步实行“精准扶贫”,下一年的资金投入方案如下:对人均年收入不高于2000元的贫困户,每户每年增加扶贫资金5000元;对人均年收入高于2000元但不高于3000元的贫困户,每户每年增加扶贫资金3000元;对人均年收入高于3000元但不高于4000元的贫困户,每户每年增加扶贫资金1000元;对已经脱贫的贫困户不再增加扶贫资金投入.依据此方案,试估计下一年该地区共需要增加扶贫资金多少元?
某学校需要从甲、乙两名学生中选一人参加数学竞赛,抽取了近期两人
次数学考试的成绩,统计结果如下表:
(1)若从甲、乙两人中选出一人参加数学竞赛,你认为选谁合适?请说明理由.
(2)若数学竞赛分初赛和复赛,在初赛中有两种答题方案:
方案一:每人从
道备选题中任意抽出
道,若答对,则可参加复赛,否则被淘汰.
方案二:每人从
道备选题中任意抽出
道,若至少答对其中
道,则可参加复赛,否则被润汰.
已知学生甲、乙都只会
道备选题中的
道,那么你推荐的选手选择哪种答题方条进人复赛的可能性更大?并说明理由.

| 第一次 | 第二次 | 第三次 | 第四次 | 第五次 |
甲的成绩(分) | ![]() | ![]() | ![]() | ![]() | ![]() |
乙的成绩(分) | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)若从甲、乙两人中选出一人参加数学竞赛,你认为选谁合适?请说明理由.
(2)若数学竞赛分初赛和复赛,在初赛中有两种答题方案:
方案一:每人从


方案二:每人从



已知学生甲、乙都只会


某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.
注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为( )
加油时间 | 加油量(升) | 加油时的累计里程(千米) |
2016年5月1日 | 12 | 35000 |
2016年5月15日 | 48 | 35600 |
注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为( )
A.6升 | B.8升 | C.10升 | D.12升 |
同学们都知道,在一次考试后,如果按顺序去掉一些高分,那么班级的平均分将降低;反之,如果按顺序去掉一些低分,那么班级的平均分将提高.这两个事实可以用数学语言描述为:若有限数列
,
满足
,则_____(结论用数学式子表示)



双十一购物狂欢节,源于淘宝商城(天猫)
年
月
日举办的网络促销活动,目前已成为中国电子商务行业的年度盛事,某商家为了解“双十一”这一天网购者在其网店一次性购物情况,从这一天交易成功的所有订单里随机抽取了
份,按购物金额(单位:元)进行统计,得到如下频率分布直方图(同一组中的数据用该组区间的中点值做代表计算).

(1)求
的值;
(2)试估计购物金额的平均数;
(3)若该商家制订了两种不同的促销方案:
方案一:全场商品打八折;
方案二:全场商品优惠如下表:
如果你是购物者,你认为哪种方案优惠力度更大?





(1)求

(2)试估计购物金额的平均数;
(3)若该商家制订了两种不同的促销方案:
方案一:全场商品打八折;
方案二:全场商品优惠如下表:
购物金额范围 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
商家优惠(元) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
如果你是购物者,你认为哪种方案优惠力度更大?